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This manuscript presents an important machine-learning-based approach to the automated detec-
tion of urine and fecal deposits by rodents, key ethological behaviors that have traditionally been 
very poorly studied. The strength of evidence for the claim is solid, showing accuracy near 90% 
across several contexts. Training and testing for the specific contexts used by other experimenters, 
however, is probably warranted to make the model most relevant to the data that may be analyzed.

Abstract In many mammals, including rodents, social interactions are often accompanied by 
active urination (micturition), which is considered a mechanism for spatial scent marking. Urine 
and fecal deposits contain a variety of chemosensory signals that convey information about the 
individual’s identity, genetic strain, social rank, and physiological or hormonal state. Furthermore, 
scent marking has been shown to be influenced by the social context and by the individual’s 
internal state and experience. Therefore, analyzing scent-marking behavior during social interac-
tions can provide valuable insight into the structure of mammalian social interactions in health and 
disease. However, conducting such analyses has been hindered by several technical challenges. For 
example, the widely used void spot assay lacks temporal resolution and is prone to artifacts, such 
as urine smearing. To solve these issues, recent studies employed thermal imaging for the spatio-
temporal analysis of urination activity. However, this method involved manual analysis, which is time-
consuming and susceptible to observer bias. Moreover, defecation activity was hardly analyzed by 
previous studies. In the present study, we integrate thermal imaging with an open-source algorithm 
based on a transformer-based video classifier for automatic detection and classification of urine 
and fecal deposits made by male and female mice during various social behavior assays. Our results 
reveal distinct dynamics of urination and defecation in a test-, strain-, and sex-dependent manner, 
indicating two separate processes of scent marking in mice. We validate this algorithm, termed by 
us DeePosit, and show that its accuracy is comparable to that of a human annotator and that it is 
efficient in various setups and conditions. Thus, the method and tools introduced here enable effi-
cient and unbiased automatic spatio-temporal analysis of scent-marking behavior in the context of 
behavioral experiments in small rodents.

Introduction
In many mammalian species, including rodents, social interactions are accompanied or followed by 
events of active urination, also known as micturition or voiding activity (Arakawa et al., 2008). Multiple 
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studies have demonstrated that urine and fecal deposits comprise many chemosensory social signals 
that carry information about the individual, such as its species, sex, social rank, and identity, as well 
as its reproductive and health conditions (Bigiani et al., 2005). These chemosensory signals include 
various metabolites, as well as many proteins, such as major urinary proteins (Brennan, 2004). Thus, 
by depositing urine spots and feces in its environment, the individual also deposits social information, 
which may later be perceived by other individuals and modify their future social interactions with 
this individual (Hurst and Beynon, 2004). In other words, the use of urine and fecal deposits allows 
individuals to advertise their availability to possible mates and communicate with other conspecifics. 
Moreover, in territorial species, urination is used to mark the territory of the individual, thus func-
tioning as a spatio-social scent-marking activity (Brennan and Kendrick, 2006). In rodents, urination 
was shown to be strongly influenced by the individual’s internal state, social rank, social context, and 
previous social experience (Desjardins et al., 1973; Hyun et al., 2021). Therefore, monitoring urina-
tion activity can provide valuable information on the individual’s social behavior and internal state. 
Specifically, deficits in urine depositing may reflect atypical social behavior in rodent models of various 
diseases (see Wöhr et al., 2011 for example), hence may be used for testing potential treatments in 
such models.

Urination during a given task is traditionally analyzed via the void spot assay, which uses filter paper 
placed on the arena floor to analyze, after the end of the experiment, the spatial distribution of urine 
spots (Wolff and Powell, 1984; Higuchi and Arakawa, 2022). However, this analysis usually lacks the 
temporal dimension, is distorted by urine smearing across the arena floor caused by the individual’s 
movement (see Figure 2d, e), and is limited in detecting overlapping urine spots. Another caveat is 
that the filter paper may be torn down by the mouse during the behavioral experiment. Recently, 
Dalghi et al., 2023 used a filter paper on the arena floor, UV light, several cameras, and a manual 
video annotation to analyze urination events. Several other studies (Verstegen et al., 2020; Miller 

eLife digest Scientists conduct behavioral experiments on animals to study brain mechanisms 
that govern social behavior and how these may be affected by various conditions. For example, in 
rodents, urination and defecation are important social activities used for communication and territory 
marking, and they are influenced by the emotional state of an individual.

In the past, these activities were analyzed at the end of an experiment by shining ultraviolet light 
on a filter paper placed on the floor of the cages. However, this method does not provide informa-
tion on when urination or defecation occurred. Also, in many cases, urine drops are smeared on the 
filter paper due to the animal's movement during the experiment, which reduces the accuracy of this 
method. To bridge this gap, Peles et al. developed a computer-vision algorithm – named DeePosit – 
to automatically track mice's urination and defecation activities during social behavior experiments 
recorded with a thermal camera.

To examine the efficiency of the tool, the researchers analyzed the urination and defecation activ-
ities of mice during several social behavior tests. They then tested whether these activities changed 
over time and if there were differences between male and female mice, or between different strains 
of laboratory mice.

The analysis revealed that the tool could identify the time and location of each urination and 
defecation event with an accuracy similar to that of a human observer. Using this tool, Peles et al. 
demonstrated that urination and defecation activities changed during a social encounter, for example, 
urination became more frequent. They observed that males urinated more often than females, which 
may be attributed to differences in their territorial behavior. It also revealed differences between 
laboratory strains.

Peles et al. are confident that this rapid, unbiased and cost-effective tool can improve the anal-
ysis of social behavior in animals, particularly rodents. This will be especially relevant for researchers 
investigating the effect of treatments in mouse models of various disorders. The tool can also be 
trained and adapted to different behavioral and experimental contexts. It may allow a comparison of 
an additional important aspect of social behavior in treated and non-treated animals, and in health 
and disease.

https://doi.org/10.7554/eLife.100739
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et al., 2023a) used thermal imaging via infrared (IR) camera for such analysis, as urine deposits are 
emitted while being in body temperature, hence can be seen in the thermal image. However, fecal 
deposits are also emitted in body temperature, making it difficult to distinguish between feces and 
small urine spots by thermal imaging alone. Moreover, these studies relied on manual analysis of 
thermal video clips, which made the analysis process time-consuming and subjected to observer bias. 
To cope with these limitations, we have developed an open-source computer vision-based software 
to automatically detect and classify deposited urine and feces from thermal video clips. Our detection 
and classification algorithm is based on a combination of a heuristic algorithm used for the preliminary 
detection of bright (warm) blobs in the thermal video clip and a trainable video classifier used to clas-
sify the preliminary detections as either urine, feces, or background (BG, i.e., not urine or feces). We 
demonstrate the efficiency of this tool by analyzing the temporal dynamics of urination and defecation 
activities in male and female CD1 (ICR) mice while performing three social behavior tests, and further 
validate the algorithm by testing it with male C57BL/6J mice. We found that urination and defecation 
activities show distinct dynamics across the various tests in a sex-, strain-, and test-dependent manner.

Results
Social discrimination
Each CD1 subject animal performed three different social discrimination tests, as previously described 
by Mohapatra et  al., 2024, on three consecutive days in the order described below. Each test 
consisted of a 15-min habituation stage, during which the subject mouse got used to an experimental 
arena containing empty chambers at randomly chosen opposite corners. After habituation, the empty 
chambers were replaced with similar chambers containing stimuli for a 5-min trial stage (Figure 1a). 
In the Social Preference (SP) test, a novel (i.e., unfamiliar to the subject mouse) sex-matched stimulus 
mouse was placed in one chamber, while an object stimulus (a Lego toy) was placed in the opposite 
chamber. In the Sex Preference (SxP) test, a novel female mouse was placed in one chamber while a 
novel male was placed in the opposite chamber. In the stress version of the Emotional State Prefer-
ence (ESPs) test, a novel stressed (restrained for 15 min before the test) mouse was introduced into 
one chamber while a naïve mouse was placed in the opposite chamber. We first analyzed the time 
spent by the subject mouse on investigating each stimulus during the three tests (Figure 1), using 
the video clips recorded via the visible light (VIS) camera. Both male and female mice showed the 
behavior expected from CD1 mice, as previously described by us (Kopachev et al., 2022). Males 
showed a significantly higher investigation time toward the social stimulus, as compared to the object 
in the SP test, toward the opposite sex, as compared to the same sex stimulus mouse in the SxP test, 
and toward the stressed mouse, as compared to the naïve mouse in the ESPs test. Females showed 
similar behavior, except for the SxP test, where they exhibited no preference for any of the two stimuli. 
In accordance with our previous study (Netser et al., 2017), in all cases, the preference toward a given 
stimulus was reflected only by long (>6s), but not by short (≤ 6s) investigation bouts (Figure 1). Thus, 
in terms of social behavior, the subject mice behaved as expected.

Urine and feces detection
The experimental setup used for the detection of urine and fecal deposits, comprising VIS and IR 
cameras, as well as a black body, is schematically shown in Figure 2a. Unlike the VIS camera (Figure 2b), 
the IR camera captures the warm urine and feces drops soon after they were deposited (Figure 2c). 
This allowed us to overcome several caveats of the void spot assay. For example, we could tolerate 
smeared urine spots (Figure 2d, e) and identify the exact time of each urine or fecal deposition event. 
Using the thermal video clips, we designed a detection algorithm (termed DeePosit) consisting of two 
main parts: (1) A preliminary heuristic detection algorithm detects warm blobs (Figure 2f). (2) These 
blobs are then fed into a machine learning-based classifier (Figure 2g), which classifies them as urine, 
feces, or background (i.e., without detection) (see methods, Videos 1 and 2, and Figure 2—video 1).

For the generation of training and testing datasets, a human annotator manually tagged urination 
and defecation events in 157 thermal video clips (about 20 min each), of which 97 were used for 
training and 60 for testing. The precision, recall, and F1 score of the DeePosit algorithm for the test 
video clips are 0.90, 0.86, 0.88 for urine deposits and 0.91, 0.89, 0.90 for feces, respectively. The 
mean F1 score: ‍(F1Urine + F1Feces)/2‍ is 0.89 and the confusion matrix is shown in Figure 2h. Notably, 

https://doi.org/10.7554/eLife.100739
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for large urine deposits, the classification precision is higher (0.98), in comparison to small urine preci-
sion (0.85), most probably because large urine drops are more distinguishable from fecal deposits, 
which are always small Figure 2—figure supplement 1. See Figure 2—video 1 and Figure 3—figure 
supplement 3, for examples of correct detections, as well as mistakes made by the detection algo-
rithm in the test videos, which are further discussed in the Discussion section.

Detection stability and consistency
We tested the algorithm’s accuracy across various stages of the experiment (Figure  3a, b), the 
various experiments (Figure 3c), the two sexes (Figure 3d), and three equal spatial divisions of the 
arena (Figure 3e). We found that the accuracy was stable in all cases, with no significant difference 
between them. These results suggest that the accuracy level of the algorithm is uniform across all 
these instances, hence the algorithm’s mistakes should not create a bias that may affect the experi-
mental results.

We further compared the accuracy level of DeePosit with that of a second human annotator, using 
the first human annotator as a ground truth to both. For that, we used a subset of 25 video clips from 
the entire test set. The accuracy achieved by DeePosit with this dataset was comparable to that of the 
second human annotator (mean F1 score of 0.84 and 0.86, respectively, Figure 3f, g). These results 

Figure 1. Investigation time across sexes and tests in CD1 mice. Each of the tests (SP, SxP, and ESPs) is comprised of a 15-min habituation stage with 
empty chambers, followed by a 5-min trial stage in which the stimuli are present in the chambers (a). The setup row shows schematic representations of 
the arena for the (b) SP, (c) SxP, and (d) ESPs tests, while the males and females rows show the mean (± SEM) time dedicated by male (n = 36, blue bars) 
and female (n = 35, red bars) mice to investigate each stimulus during the various tests. The two leftmost bars in each panel show the total investigation 
time, while the two middle bars show the time spent on short (≤ 6 s) investigation bouts, and the two rightmost bars show the time spent on long (>6 s) 
investigation bouts. A two-sided Wilcoxon rank sum test was used for statistical significance. ***p < 0.001.

https://doi.org/10.7554/eLife.100739
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demonstrate the partial accuracy of urination and defecation annotation by human observers and 
show that DeePosit is comparable to a trained observer in tagging urine and fecal depositions.

We also compared the accuracy of DeePosit with the accuracy achieved by a classic object detec-
tion algorithm (YOLOv8) (Jocher et al., 2023). For that, we annotated 39 training videos of CD1 mice 
with bounding boxes to match the YOLOv8 framework. For fairness, we compared YOLOv8 results 
with DeePosit algorithm that was trained on the same set of video clips. DeePosit was significantly 
better (mean F1 = 0.81) than YOLOv8, regardless whether we used a single image (YOLOv8 Gray, F1 
= 0.58), or a sequence of three images (0, 10, and 30 s after each frame, YOLOv8 RGB, F1 = 0.68) 
as in input (see Figure 3h–j). The fact that using a sequence of images (YOLOv8 RGB) gave better 

Figure 2. The experimental setup and analysis method. The experimental setup (a) includes a visible light (VIS) camera, an infrared (IR) camera, and 
a blackbody set to 37°C. VIS (b) and IR (c) images that were captured at the same moment, a short time after a urine deposition, exemplify that, as 
the urine is still warm, it appears as highly contrasted blob in the IR image but not in the VIS one. Large urine spots, such as the one shown in (d), may 
be smeared across the arena’s floor (e), which is one limitation of the use of filter paper for quantifying urination at the end of the experiment. The 
preliminary detection algorithm is based on subtracting a background image from each frame in the video (f), which allows the detection of hot blobs 
reflecting the animal itself and urine and feces deposits. The detected blobs are then classified using a transformer-based artificial neural network 
(g), which gets as its input a time series of patches cropped around the detection and provides its classification as an output. Each three patches in that 
time series are merged into a single RGB image (see methods). In the confusion matrix presenting the accuracy of the full pipeline for test videos (h) in 
CD1 mice, the ‘Miss’ row counts the events that were not detected by the preliminary hot blobs detection and, hence, were not fed to the classifier. The 
BG (background) column counts the number of automatic detections for which no matching manually tagged event exists in the relevant space and time 
window. Test videos include videos from 60 experiments. See Methods for more details. The precision, recall, and F1 score for urine detection are 0.90, 
0.86, 0.88 accordingly, and 0.91, 0.89, 0.90 for feces detection. The mean F1 score: ‍(F1Urine + F1Feces)/2‍ is 0.89.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure 2—video 1. Video for the events in the confusion matrix.

https://elifesciences.org/articles/100739/figures#fig2video1

Figure supplement 1. Accuracy for small and large detections in CD1 mice.

https://doi.org/10.7554/eLife.100739
https://elifesciences.org/articles/100739/figures#fig2video1
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results compared to a single one (YOLOv8 Gray) 
suggests that temporal information is important 
for the accurate detection and classification of 
deposition events.

Finally, to test the accuracy of DeePosit across 
different mouse strains and experimental arenas, 
we evaluated DeePosit accuracy for SP and SxP 
tests performed by C57BL/6 black mice (n = 10) 
in a white Plexiglass arena. DeePosit achieved 
good performance (mean F1 = 0.81), even though 
videos with black mice or with white arenas were 
not included in the training set (see Figure 3—
figure supplement 1). Thus, DeePosit shows 
stable accuracy across experimental conditions.

Our code allows changing the main parame-
ters of the algorithm in order to adjust them to 
the relevant settings. Therefore, we examined the 

sensitivity of DeePosit to changes in the parameters used by the algorithm. We first examined DeeP-
osit accuracy as a function of the ‍∆TThreshold‍ parameter of the preliminary heuristic detection (see 
methods). We found that ‍∆TThreshold‍ = 1.6°C gave the best performance in our setting (see Figure 3—
figure supplement 2), although the accuracy was quite stable (mean F1 score of 0.88–0.89) for values 
between 1.1 and 3°C. We also trained the DeePosit classifier with an input time window of [–11..30] s 
instead of [–11..60] s and got no difference in the accuracy level (mean F1 score of 0.89 in both cases).

Distinct dynamics of urination and defecation activities across the 
various tests
Figure 4a, b shows the raw results of urine and fecal deposit detection by the DeePosit algorithm as 
a function of time across all three tests, for each male (blue symbols) and female (red symbols) subject 
mouse. The symbols representing the various deposit types are also labeled (with black dots) according 
to the arena side of each deposition (relative to the two stimuli). These raw results were further 
analyzed by computing the average number of urine or fecal deposits, per minute (Figure 4C). The 
area of the deposits (cm2) is also plotted (Figure 4d), since urine deposit size might vary significantly 
between distinct events and conditions (Wegner et al., 2018). In general, the event rate and deposit 
area showed similar trends. As for the side preference, females showed a slight tendency to a higher 
urination rate at the social stimulus side in the SP test, while males showed a tendency to a higher 
defecation rate at the social stimulus side (see Figure 4—figure supplement 2). Importantly, urination 
and defecation activities showed distinct dynamics from each other: defecation exhibited a single 
clear peak in an early stage of the habituation, which appeared in all cases. In contrast, urination was 
characterized by two peaks, which were not visible in the SP test but appeared in the SxP and got 
even stronger in the ESPs test, thus showing a gradual increase across test days. The first urination 
peak occurred in males at the early habituation stage, parallel to the peak in defecation, while the 
second urination peak occurred in both males and females at the beginning of the trial stage, after 
stimuli insertion into the arena. For statistical analysis of these dynamics, we compared the mean urine 

and fecal deposition rates between three periods: 
the beginning of habituation (habituation minutes 
1–4), the end of habituation (habituation minutes 
11–14), and the trial - after stimuli introduction 
(trial minutes 1–4) (Figure 5a, b). The last minute 
of both the habituation and the trial stages was 
not included in the analysis since DeePosit uses 1 
min of video after the deposition as input; hence, 
the accuracy may be lower in cases where we 
have less than 1 min of video after the deposition. 
However, including the missing minute of each 
stage in the analysis yielded similar results (see 

Video 1. IR video of a single ESPs trial of a male mouse 
with an overlay of the automatic detections. Automatic 
detections are overlayed in red for feces, green for 
urine, and blue for BG. The stressed mouse side of the 
arena is marked in green, and the object side is marked 
in red. Counters of the number and area of automatic 
detections in each side of the arena are written on the 
top left. The video plays at X8 speed.

https://elifesciences.org/articles/100739/figures#video1

Video 2. IR video of a single ESP habituation of a male 
mouse with an overlay of the automatic detections. The 
video shows the habituation part of the experiment in 
Video 1.

https://elifesciences.org/articles/100739/figures#video2

https://doi.org/10.7554/eLife.100739
https://elifesciences.org/articles/100739/figures#video1
https://elifesciences.org/articles/100739/figures#video2
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Figure 5—figure supplement 1). For both males and females and across all tests (besides female 
SP, where only a trend was observed), we found a significantly higher level of fecal deposition at the 
beginning of habituation than at the habituation end and the trial stage. In contrast, a similar compar-
ison of urination showed that its level was significantly higher during early habituation than at the end 
of it only for males in the SxP and ESPs tests. A similar elevation in urination was observed during the 
trial stage, as compared to the habituation end, for both males and females, again specifically during 
the SxP and ESPs tests. Interestingly, we found an opposite trend for fecal deposits, with a significant 
decrease in defecation rate during the trial, as compared to the end of habituation, in all the tests 
for males and in the SxP test for females (Figure 5a, b). Similar results were found for urine and fecal 
deposit areas (Figure 5—figure supplement 2). Moreover, similar trends were observed when the 
proportion of mice actively depositing urine or feces during each stage was calculated for each case 
(Figure 5c). These data reveal distinct dynamics for urination and defecation activities in a sex- and 
test-specific manner.

When comparing the urination and defecation patterns of CD1 male mice with those observed in 
C57BL/6 male mice (Figure 4—figure supplement 1, Figure 5d, and Figure 5—figure supplement 

Figure 3. Validation of DeePosit accuracy. Mean accuracy ± SEM of urine (a) and fecal (b) deposits detection by DeePosit, as measured by F1 score 
across various stages of the experiment. Each ‘+’ or ‘o’ marks the F1 accuracy for a single mouse in a single experiment. No significant difference 
was found. Similarly, DeePosit accuracy was not significantly affected by the experiment type (c), by the sex of the subject mouse (d), or by the spatial 
location of the deposition in the arena (arena’s floor was divided into three equal parts) (e). A two-sided Wilcoxon rank sum test was used. (a–c, e) are 
FDR corrected rank sum tests (Benjamini and Hochberg, 1995). The # at (b) stands for FDR corrected p-value of 0.08. Sixty test videos (24 videos with 
a male subject mouse and 36 with a female) were used in (a, b, d). Forty-six test videos were used in (c, e) of which 18, 14, 14 videos were SP, SxP, and 
ESPs accordingly. Mice without manually annotated depositions of the relevant type (either urine or feces) during the relevant period, experiment, or 
spatial location were ignored (since F1 is not defined in such cases). Since differentiating small urine and feces in thermal videos can be a challenging 
task even for humans, we evaluated the accuracy of a second human annotator on 25 test videos of CD1 mice (a subset of the full test set) and reported 
both the accuracy achieved by DeePosit (f) and the second human annotator (g) on these test videos. The mean F1 score, ‍(F1Urine + F1Feces)/2‍ is 
0.86 for the second human annotator and 0.84 for the DeePosit algorithm. To compare our result with another popular object detection approach, we 
annotated 39 training videos of CD1 mice with bounding boxes to match the YOLOv8 framework. For fairness, we trained both algorithms on the same 
training set of videos. We tested the accuracy on the test set which includes 60 videos. (h) shows the confusion matrix for DeePosit, while (i, j) show the 
confusion matrices achieved using YOLOv8 with a single image as input (YOLOv8 Gray) and with three images as input representing time t + 0, t + 10, 
t + 30 s from each event (YOLOv8 RGB). DeePosit accuracy surpasses YOLOv8 results in both cases. YOLOv8 RGB accuracy surpasses YOLOv8 Gray, 
suggesting that temporal information is helpful in the detection of urine and feces.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Accuracy for small and large detections in C57BL/6 mice.

Figure supplement 2. Detection accuracy at various values of ‍∆TThreshold‍.

Figure supplement 3. Examples of detections in test videos.

https://doi.org/10.7554/eLife.100739
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1d), we found distinct characteristics. In contrast to CD1 mice, urination rate of C57BL/6 mice was 
higher at the beginning of habituation compared to the end of it already in the SP experiment. On 
the other hand, urination rate of C57BL/6 mice did not increase during the trial as compared to the 
end of habituation in any of the experiments. Notably, unlike CD1 mice, of C57BL/6 mice did not 
deposit urine spots smaller than 1 cm2 (compare Figure 3—figure supplement 1 with Figure 2—
figure supplement 1). As for the defecation rate of C57BL/6 mice, similarly to CD1 mice, it was higher 
at the beginning of habituation compared to the end of it. However, unlike the trend in CD1 mice, it 
was not reduced in the trial stage, as compared to end of habituation. Thus, the distinct dynamics of 
urination and defecation activities observed using DeePosit, are mouse strain specific.

Sex-dependent differences across the various stages
We used two types of statistical tests to compare between male and female CD1 mice. A two-
sided Wilcoxon rank sum test (significance marked by *) was used for all pairwise comparisons. 
In addition, since some of the data was zero-inflated (many mice did not deposit urine or feces 
at all during the relevant period), we used a two-way Chi-square test (significance marked by +) 
to compare the distribution of zeros and non-zeros in the male group versus the female group. A 
test-dependent significant difference between males and females was found in the early stage of 
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Figure 4. Urine and fecal deposition detection results across tests in CD1 mice. Each o represents a single detection of urine deposition (a), while 
each + represents a single detection of fecal deposition (b). A black dot in the center of a circle or a + sign marks that this detection is on the side of 
the preferred stimulus, defined as the social stimulus in the SP trial, the female in the SxP trial, and the stressed mouse in the ESPs trial. Short green 
lines mark the start and end of the habituation stage and the end of the trial stage, while short vertical black lines mark the end of minute 14 of the 
habituation stage. The vertical black line at time = 0 marks the start of the trial stage after stimuli introduction to the arena, while the vertical dashed line 
marks 4 min after the beginning of the trial. Dynamics plots (right) show mean rate (c) and mean area (d) per minute for both urine and fecal deposits. 
Error bars represent ± SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Urine and fecal deposition detection results across tests in C57BL/6 mice.

Figure supplement 2. Urine and fecal deposition side preference.

https://doi.org/10.7554/eLife.100739
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habituation (Figure 6a). On the first day of experiments (the SP test), males and females showed 
a low urination rate at the first 4 min of habituation, with no significant difference between them. 
However, in the next two testing days (SxP and ESPs tests), when the mice were already familiar 
with the arena, we found a significantly higher rate and area of urine deposition in males compared 
to females (Figure 6a, Figure 6—figure supplement 1a). As for defecation events, males showed 
a significantly higher level in this period, in all tests. During the last stage of habituation (minutes 
11–14), we found a significant difference between males and females only for the ESPs test, with 
males showing higher levels of both urination and defecation rate (Figure 6b) and area (Figure 6—
figure supplement 1b).

For statistical comparison between males and females during the trial, where an initial peak was 
observed in some cases (Figure 4c, d), we divided the trial stage into two periods: the first minute 
and minutes 2–4, and averaged the results of each period separately. As apparent in Figure 6c, d, 
Figure 6—figure supplement 1c, d, the urination rate during the first minute of the trial stage showed 
no sex-dependent difference in the SP test. In contrast, a significantly higher level was observed for 
males versus females in the SxP and ESPs tests. No sex-dependent difference in urination rate was 
observed For trial minutes 2–4, or in defacation rate for any of the trial periods.

Figure 5. Comparison between test stages. Mean rate ± SEM of urination and defecation events detected during habituation start (minutes 1–4), 
habituation end (minutes 11–14), and trial (minutes 1–4) stages, for male CD1 mice (a), female CD1 mice (b) and male C57BL/6 mice (d). Percent of 
active mice (mice with at least one detection) across tests during habituation start, habituation end, and trial stages, for CD1 mice (c) and for male 
C57BL/6 mice (e). Two-sided Wilcoxon rank sum test equal to or smaller than 0.1, 0.05, 0.01, and 0.001 was marked with #, *, **, and ***, respectively. 
In (a, b, d), only mice with urination in at least one of the periods were included in the urine analysis. Same for feces. In (a, b), n = 13, 27, 19 male CD1 
urination in SP, SxP, and ESPs, and n = 21, 28, 21 for defecation. Accordingly, for CD1 females, n = 5, 9, 8 for urination and n = 9, 14, 14 for defecation. In 
(d), n = 6, 6 for urination and n = 7, 9 defecation in SP and SxP. In (c), the total number of CD1 male mice is 24, 28, 21 in SP, SxP, and ESPs, and the total 
number of female mice is 15, 16, 17. In (e), the total number of male C57BL/6 mice is 10, 10 in SP and SxP.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of deposition events rate between test stages using 5-min periods.

Figure supplement 2. Comparison of deposition area between test stages using 4-min periods.

https://doi.org/10.7554/eLife.100739
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Male urine and fecal deposition rates are test dependent
Since the data so far suggest a dynamic change from the SP (first day) to the SxP (second day) and 
ESPs (third day) tests specifically for males, we checked the effect of test type (SP, SxP, and ESPs) on the 
dynamics of urination and defecation activities using Kruskal–Wallis test (Table 1 and Appendix 1—
table 1). The urination and defecation rates (Table 1) and deposits areas (Appendix 1—table 1) of 
males showed both a significant effect of the test type, with urination showing this effect during early 

Figure 6. Comparison of deposition rates between sexes. The mean rate ± SEM of urination and defecation events for males (blue bars) versus females 
(red bars) during early (minutes 1–4) (a) and late (minutes 11–14) (b) periods of the habituation stage and during the first minute (c) and minutes 2–4 of 
the trial stage (d) . A significant difference between the mean rate of urine or fecal depositions (two sided Wilcoxon rank sum test) with p value equal to 
or smaller than 0.1, 0.05, 0.01, 0.001 was marked with #, *, **, ***, respectively. A significant difference in the distribution of non-depositing animals (Chi-
square test) with p value equal to or smaller than 0.1, 0.05, 0.01, 0.001 was marked with !,+,++,+++ respectively. For male mice, n = 24, 28, 21 for SP, SxP, 
and ESPs. For female mice, n = 15, 16, 17 accordingly.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of mean deposition areas between sexes.

Table 1. The effect of the test (SP, SxP, and ESPs) on urination or defecation events rates.
Kruskal–Wallis test was used to check if the test type affects the rate of urination or defecation events. p-value equal to or smaller 
than 0.1, 0.05, 0.01, 0.001 was marked with #, *, **, ***, respectively. For male mice, n = 24, 28, 21 for SP, SxP, and ESPs. For female 
mice, n = 15, 16, 17 accordingly.

Measurement Habituation, minutes 1–4 Habituation, minutes 11–14 Trial, minute 1 Trial, minutes 2–4

Male #Urine 0.0004*** 0.3804 0.0015** 0.0301*

Female #Urine 0.3777 0.3943 0.4287 0.3918

Male #Feces 0.0221* 0.1178 0.3054 0.9251

Female #Feces 0.0635# 0.2653 0.1553 0.5663

https://doi.org/10.7554/eLife.100739
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habituation and during the trial, while defecation showing such effect at early habituation, but not 
during the trial stage. No significant effect was found for females.

Discussion
Here, we present a new algorithm and an open-code trainable AI-based computational tool for 
detecting and classifying urination and defecation events from thermal video clips. This algorithm 
enables a detailed characterization of the dynamics of urination and defecation activities during social 
behavior of small rodents. One advantage of this tool is that it is automated, thus allowing a rapid 
and observer-unbiased analysis of urine and fecal deposition events and areas, with a good temporal 
and spatial resolution. Specifically, combining our algorithm with an IR camera for thermal imaging 
of behavioral experiments can replace the void spot test, which usually lacks any temporal resolution 
and is prone to mistakes caused by urine smearing and filter-paper tearing. Finally, our algorithm 
facilitates the analysis of defecation activity, which was rather unexplored so far but may contribute 
to scent-marking behavior, as discussed below. Our algorithm uses thermal video clips generated by 
an IR camera placed above the arena and does not require a camera placed below a clear arena floor, 
as used by a recent paper (see Keller et al., 2018 for example). Thus, it can be utilized for analyzing 
experiments conducted in standard experimental setups, such as those used for the three-chamber 
test. The computational tool and experimental method presented here may be useful for a detailed 
characterization of social behavior in mice, including murine models of autism spectrum disorder and 
other pathological conditions. It may also be used to explore urination and defecation activities in 
other scientific contexts, unrelated to social behavior. Finally, our experimental setup is cheap and 
easy to assemble, and the detection algorithm can run on a standard PC with a GPU card.

Analysis of the errors made by the algorithm in the test dataset (see Figure 2—video 1 for video 
clips of these events) raised several limitations, that might be addressed in future work. Urine or fecal 
deposits must be fully visible while the deposit is still warm. A close adjacency between the mouse 
and the deposit might cause the mouse mask to overlap the mask of the deposit, thus preventing its 
detection. Many of the ‘miss’ events in the test video clips were created by the mouse staying close to 
the urine or fecal deposits for a long period after their deposition. Few other ‘miss’ events were due 
to very small urine spots or due to repeated urination in the same position during a very short time 
period, which resulted in detecting these separate urination events as a single event by the algorithm. 
A wrong classification of urine as fecal deposition occurred in 2.3% of the urination events. In many 
of these events, the urination spot was small (and therefore harder to distinguish from a fecal depo-
sition) (see Figure 3—figure supplement 3c). Wrong classification of background as feces occurred 
21 times in the test set. In most of these events, the mistake was due to feces that were moved by 
the mouse to a new location while still being warm. Such cases may be mitigated in future work by a 
tracking algorithm that continuously tracks the location of each fecal deposit. Wrong classification of 
background as urine occurred 33 times in the test set, with some of these errors caused by smearing 
of large warm urine spots.

We evaluated the accuracy of the algorithm and found it to be uniform across the various sexes, 
tests and session stages of the experiments used by us. This suggests that the low level of errors 
made by the algorithm should not create a bias during biological experiments. Moreover, the algo-
rithm achieved a good and stable accuracy even for C57BL/6  mice examined in a while arena, a 
condition that was not represented in the training videos. Thus, the algorithm seems to be robust, 
with a low sensitivity to changing conditions. We also compared the algorithm’s accuracy to the accu-
racy achieved by a second human annotator on the same dataset and concluded that the algorithm 
accuracy is comparable to the accuracy of a human annotator while being much faster and unbiased. 
Finally, the algorithm showed superior performance over classic object detection algorithms, such as 
YOLOv8, which are based on a single image input. This is most likely due to the transformer-based 
architecture of our algorithm, which allows it to use the temporal information extracted from the 
thermal video clips.

Future work might improve DeePosit by extending the training set and including more challenging 
examples. Notably, comparing a small training set (Figure 3h) with a larger one (Figure 2h) shows 
that the larger training set improved the accuracy of DeePosit. Another way for future improvement 
in DeePosit accuracy may be by using a trainable detection and segmentation algorithm instead 
of heuristic preliminary detection. Note that our classifier currently does not get the mask of the 

https://doi.org/10.7554/eLife.100739
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preliminary detection as an input, making the classification task harder when there are adjacent depo-
sition events. An end-to-end trainable detection, segmentation, and classification pipeline might 
address these limitations but will require a much larger training set. Future work might also adapt the 
algorithm for multi-animal experiments. Such adaptation might require detecting the mask of each of 
the animals, separating the identity of each of the animals, and associating each deposition with the 
relevant animal.

We validated our method and algorithm using experimental results from social discrimination tests 
conducted by male and female CD1 and male C57BL/6 mice. We demonstrated distinct dynamics of 
urination and defecation activities across the habituation and trial stages, with sex-, test-, and strain-
dependent differences. Both male and female CD1 mice, as well as male C57BL/6  mice showed 
higher rates of defecation activity at the early stage of the habituation phase, as compared to later 
stages (Figure 5). This tendency may reflect a higher level of anxiety at the beginning of the habitua-
tion phase, caused by the novel context. Still, it may also serve for scent-marking activity, that labels 
the arena as a familiar environment. The latter explanation is supported by the fact that the peak in 
defecation activity was not reduced from the first-day test (SP) to the second and third-day tests (SxP 
and ESPs), when the subject is expected to be less anxious due to the familiar context. In contrast to 
defecation, urination activity at the beginning of the habitation phase in CD1 mice was test depen-
dent. While no peak was observed during the SP test, the first time the animals were exposed to 
the experimental arena, it was observed in the second test (SxP) and got even stronger in the last 
test (ESPs). This development was statistically significant in CD1 males but not in females. Since 
these changes occur during the habituation phase, before the introduction of stimuli to the arena, 
they cannot reflect the type of test and thus seem to be induced by the order of the experiments. 
Notably, similar dynamics across experimental days were previously reported using the void spot 
assay for C57BL/6j mice (Keil et al., 2016). This suggests that the induction of urination activity by 
males at the early stage of the habituation phase represents territorial scent-marking activity, which is 
positively correlated with the higher familiarity experienced by the subject in the arena as the experi-
ments progressed between days. It should be noted that an early peak of urination upon entering an 
environment was reported by a recent study using a thermal camera for manual analysis of urination 
activity (Miller et al., 2023b). A second peak of urination activity was observed at the beginning of 
the trial period, after stimuli insertion to the arena. This was observed in both male and female CD1 
mice, but the test type significantly affected it only in males. In this case, we cannot dissect the effect 
of test type from the test order, as the urination activity occurred after stimuli insertion and, hence, 
may be induced by the presence of specific social stimuli. Since the subjects are already habituated 
to the arena at this stage, the elevated urination activity seems to serve as part of the subjects’ social 
behavior, most probably as a territorial scent-marking behavior induced by the presence of social 
stimuli, i.e., competitors. Interestingly, we found several differences in the dynamics of CD1 male 
mice and C57BL/6 male mice, suggesting that the scent-marking behavior is also strain specific. 
Unlike CD1 male mice, C57BL/6 male mice exhibited a peak in urination already at the beginning of 
the first (SP) habituation, a trend toward higher level of defecation activity in the SP trial stage, and 
no increase in urination activity during the SP and SxP trial stage, compared to the habituation end. 
However, several findings were common for both CD1 and C57BL/6 male mice, such as the higher 
feces rate at the beginning of habituation in comparison to the end of habituation and the higher 
levels of urination at the beginning of the SxP habituation stage.

We did not observe a consistent spatial distribution of the urine or fecal deposits between the 
arena sides of the preferred and non-preferred stimuli in CD1 mice. This seems to contradict a 
recent study (Miller et al., 2023b), that reported opposite bias toward familiar versus unfamiliar 
stimuli in losers versus winners wild-derived mice following a social contest. This contradiction 
may be due to the distinct mouse strains or the distinct contexts of social behavior (presentation 
of a single stimulus animal in comparison to two simultaneously presented animals) used by both 
studies.

Overall, the novel algorithm and software presented here enable a cost-effective, rapid, and unbi-
ased analysis of urination and defecation activities of behaving mice from thermal video clips. The 
algorithm is trainable and may be adapted to various behavioral and experimental contexts. Thus, 
it may pave the way for the integration of this important behavioral aspect in the analysis of small 
rodents’ social and non-social behaviors, in health and disease.

https://doi.org/10.7554/eLife.100739
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Materials and methods
Animals
Subject animals were adult (12–14  weeks old) male and female wild-type offspring derived from 
breeding couples of Gtf2i+/Dup with a CD1 (ICR) genetic background mice (Mervis et al., 2012). We 
used this line of mice since, in parallel to this work, we are investigating the phenotype of the Gtf2i+/
Dup mutant line. These results will be published separately. These mice were bred and grown in the SPF 
mouse facility of the University of Haifa. C57BL/6 mice were purchased from Envigo (Rehovot, Israel). 
Stimulus animals were adult (12–14 weeks old) male and female CD1 or C57BL/6 mice purchased from 
Envigo (Rehovot, Israel). All mice were housed in groups of 3–5 in a dark/light 12 hr cycle (lights on 
at 7 pm), with ad libitum food and water under veterinary inspection. Experiments were performed in 
the dark phase of the dark/light cycle. All experiments were approved by the University of Haifa ethics 
committee (Reference #: UoH-IL-2301-103-4).

Setup and video acquisition
The experimental setup is based on the setup described in Netser et al., 2019. Briefly, a black or white 
Plexiglass box arena (37 cm × 22 cm × 35 cm) was placed in a sound-attenuated chamber. A visible light 
(VIS) camera (both Flea3 and Grasshopper3 models manufactured by Teledyne FLIR were used, both with 
a wide-angle lens, rate of 30 frames per second, and USB3 interface) and a long wave IR camera (Opgal’s 
Thermapp MD with 6.8 mm lens, 384 × 288 pixels at a rate of 8.66 frames per second (FPS)) were placed 
about 70 cm above the arena’s floor. The IR camera was designed to measure human skin temperature 
and outputs the apparent temperature for each pixel. Raw pixel values were converted to Celsius degrees 
using the formula supplied by the manufacturer. We acquired the camera videos using custom-made 
Python software (code is available at https://github.com/davidpl2/DeePosit [copy archived at Peles, 
2025] and https://doi.org/10.5281/zenodo.14754159) that used the manufacturer’s SDK (SDK version: 
EyeR-op-SDK-x86-64-2.15.915.8688-MD). To improve the accuracy of and reduce possible drifts in the 
measured temperature, a high-emissivity blackbody (Nightingale BTR-03 blackbody by Santa Barbara 
Infrared, Inc) was placed in the camera’s field of view and was set to 37℃. During analysis, the offset 
between the blackbody apparent temperature and 37°C was subtracted from the image. To improve 
image quality, we turned on the camera at least 15 min before the beginning of the experiment (this 
allows the camera’s temperature to get stable). In addition, to reduce pixel non-uniformity, we captured 
16 frames of a uniform surface (a piece of cardboard placed in front of the camera) before each test. 
These images were then averaged, and the average image’s mean was subtracted from it to get a non-
uniformity image with zero mean. The non-uniformity image was then subtracted from each image in the 
video to achieve better pixel uniformity.

Social behavior tests
We used three distinct social discrimination tests, as previously described in Mohapatra et al., 2024. 
Briefly, all tests consisted of 15 min of habituation, during which the subject mouse got used to the 
arena with empty triangular chambers (12 cm isosceles, 35 cm height) located at randomly chosen 
opposite corners. Each triangular chamber had a metal mesh (18 mm × 6 cm; 1 cm × 1 cm holes) at 
its bottom, through which subject mice could interact with the stimuli. After habituation, the empty 
chambers were removed and new stimuli-containing chambers were introduced into the arena for the 
5-min trial. In the SP test, a novel (i.e., unfamiliar to the subject mouse) sex-matched stimulus mouse 
was placed in one chamber, whereas an object stimulus (a Lego toy) was placed in the opposite 
chamber. In the Sex Preference (SxP) test, a novel female mouse was placed in one chamber while 
a novel male was placed in the opposite chamber. In the ESPs test, a novel stressed (restrained in a 
50-ml plastic tube for 15 min before the test) sex-matched mouse was introduced to one chamber of 
the arena while a novel naïve mouse was placed in the opposite chamber.

Behavioral analysis
VIS video clips were analyzed using TrackRodent (Netser, 2020), as previously described in Netser 
et al., 2017.

https://doi.org/10.7554/eLife.100739
https://github.com/davidpl2/DeePosit
https://doi.org/10.5281/zenodo.14754159
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Urine and feces detection algorithm
The detection algorithm consists of two main parts. A preliminary heuristic detection algorithm detects 
warm blobs. These blobs are then fed into a machine learning-based classifier, which classifies them as 
either urine, feces, or background (i.e., no detection). The algorithm’s code is available here: https://​
github.com/davidpl2/DeePosit and https://doi.org/10.5281/zenodo.14754159.

Manual inputs
A graphical user interface was developed in Matlab to support all of the required manual annotations. 
Each video went through a manual annotation of the arena’s floor, the area of the blackbody, and a 
specification of the first and last frames of both the habituation and trial periods. These two periods 
were separated by a ~30-s period during which the stimuli were introduced to the arena, which was 
excluded from the analysis. Also, the arena side of each stimulus (e.g., the male and female sides in 
the SxP test) was defined as the half of the arena close to this stimulus’s chamber. To generate the train 
and test sets, a human annotator manually tagged urine and fecal deposition events in videos of 157 
experiments with CD1 mice, of which 97 were used for training and 60 for testing. A single click was 
used to mark the center of each urine or fecal deposit in the first frame where it was clearly visible. 
The training set included 751 urine annotations and 637 feces annotations. The test set included 438 
urine annotations and 374 feces annotations. Additional details can be found in the software’s manual.

Preliminary detection of hot blobs
Urine and fecal deposits appear as hot (bright) blobs in the first seconds after deposition. After a 
cool-down period, which takes about 30–60 s for feces and small urine spots and up to ∼4 min for 
large urine spots, feces and urine appear as dark spots in the thermal image. The preliminary detec-
tion relies on these effects (see pseudo-code in Algorithm 1). It uses image subtraction to search for 
hot blobs that appear in the video and cool down later. We generate a background image ‍Bi‍ for each 
frame ‍Fi‍ to detect new hot blobs. Subtraction of ‍Bi‍ from ‍Fi‍ generates an image in which the mouse 
pixels and new (warm) urine and feces pixels appear bright. We set ‍B0‍ as the per-pixel minimum of 
the first 20 s of video (note that habituation and trial videos are analyzed separately to account for 
possible minor shifts in the arena’s position). We assume that the mouse is brighter than the arena’s 
floor and that the mouse moves during the first 20 s, so each pixel will get the arena’s floor value at 
least once during this time.

For ‍i > 0‍ we compute ‍Bi‍ as the minimum of images ‍Nj‍, ‍j ∈ [i − 44, .., i − 36]‍ (this roughly matches 
time range ‍[i − 5s, .., i − 4s]‍) where ‍Nj‍ is an image in which the mouse pixels were replaced by the last 
known values from before the time that the mouse occupied these pixels. We set ‍Nj<=0 = B0‍.

To compute the mouse mask at frame i, ‍Bi−1‍ is subtracted from ‍Fi‍. The subtraction result is 
dilated by Matlab’s imdilate function with a structuring element of a disk of a radius of 2 pixels and 
then compared against a threshold of 1°C to get a binary mask of the pixels that are warmer than 
the arena’s floor. Connected regions are then computed using Matlab’s bwlabel function and the 
connected region with the largest intersection with the arena’s floor is considered as the mask of the 
mouse (denoted ‍Mi‍).

‍Ni‍ is then computed by taking ‍Fi‍ values for the pixels outside ‍Mi‍ and taking the values of ‍Ni−1‍ for 
the mouse containing pixels: ‍Ni = Ni−1 ∗ Mi + Fi ∗ (1 − Mi)‍ where * denotes pixel-wise multiplication.

The difference image ‍Di‍ is computed by: ‍Di = Fi − max(T, Bi)‍ where ‍T ‍ is the arena’s floor median 
temperature, computed by ‍T = median(Bi(AF&¬Mi&¬Mi−1))‍ where ‍AF‍ is a mask of the arena’s floor, ‍&‍ is 
pixel-wise AND operation, and ¬ is pixel-wise NOT operations. Using T prevents higher detection sensitivity 
in darker regions of the arena floor (regions in the arena’s floor that are covered in cooled-down urine appear 
darker than dry regions of the arena’s floor, see Figure 2e).

The cooldown rate ‍CDi‍ is computed by taking the per pixel minimum of the frames in the next 40 s 
following ‍Fi‍ and subtracting it from ‍Fi‍.

The hot blobs mask ‍BMi‍ is computed by taking the pixels for which ‍Di > ∆TThreshold‍ and not 
included in ‍Mi‍ and ‍Mi−1‍ and for which the ‍CDi > 1.1‍ and ‍CDi > 0.5 ∗ Di‍. We explored several values 
for ‍∆TThreshold‍ (see Figure 3—figure supplement 2) and chose ‍∆TThreshold = 1.6◦C‍ as the default value 
for this parameter. We ask for the cooldown to be at least half of the increase in the temperature but 
not more than that since very large urinations cool down slower and might take more than 40 s to cool 

https://doi.org/10.7554/eLife.100739
https://github.com/davidpl2/DeePosit
https://github.com/davidpl2/DeePosit
https://doi.org/10.5281/zenodo.14754159
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down fully. We excluded pixels in ‍Mi−1‍ (mouse containing pixels in frame i-1) and not just ‍Mi‍ since the 
IR sensor has a response time that might causes pixels included in ‍Mi−1‍ to be slightly brighter.

‍BMi‍ goes through a morphological close operation using Matlab’s imclose function with a structure 
element of a disk with a radius of 4 pixels. This causes any nearby drops of urine to unify to a single detec-
tion. Blobs that overlap pixels outside the arena’s floor or touch the mouse mask are ignored to avoid detec-
tion on darker areas of the mouse (mostly the tail), reflections from the arena’s wall, and detections due to a 
stimulus mouse which sometimes sticks his nose throughout the barrier net of the chamber. Also, blobs with 
a size <2 pixels or larger than 900 pixels are ignored (pixel size is roughly 0.02 cm2).

Blobs that intersect previously detected blobs are considered to be the same detection if no more 
than 30 s passed from the last frame in which the previous detection was last detected. A unified 
detection mask is computed each time a detection is associated with a previous detection. This allows 
reduction of false alarms which might be caused by the smearing of a still-hot urine drop. If no such 
intersection exists, a new preliminary detection is added to the list of detections. A blob should be 
detected in at least two frames to be included in the output detections. The selected frame ID for 
each blob is the frame that contains the maximum intensity for this blob out of all frames in which this 
blob was detected. The representative coordinates for each detected blob were chosen by taking the 
pixel with the maximum intensity inside the blob in the selected frame. Usually, the selected frame for 
each blob is the first frame of the detection (as the detection cools, the maximum intensity is usually 
in the first detected frame). Still, it might be another frame if the detection was partly occluded by the 
mouse tail or if a second urine event occurred in the same place during the relevant time frame. The 
output detections are fed into a classifier, which will be described next.

The detection threshold ‍∆TThreshold‍ is higher than the mouse detection threshold (1°C) to avoid 
false defections within the borders of the subject mouse body.

Algorithm 1 Preliminary Detection of Hot Blobs

‍B0(p) ← mini∈[1..20FPS](Fi(p))‍                                                                               ‍▷‍ Background image at pixel p.
‍Ni<=0 ← B0‍ 
Let ‍Fi‍ be the i’th frame in the video
Let ‍AF ‍ be the mask of the arena’s floor (equals 1 for the arena’s floor pixels and 0 elsewhere)
for ‍i ∈ [1..n]‍ do
      𝑀𝑖 ← 𝐵𝑙𝑜𝑏_𝑊𝑖𝑡ℎ_𝑀𝑎𝑥𝑖𝑚𝑎𝑙_𝐹𝑙𝑜𝑜𝑟_𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑖𝑚𝑑𝑖𝑙𝑎𝑡𝑒((‍Fi − Bi−1‍) > 1°C, 𝑟𝑎𝑑𝑖𝑢𝑠 = 2))
      ‍Ni ← Ni−1Mi + Fi(1 − Mi)‍                                       ‍▷‍ Mouse pixels are replaced with background pixels
      ‍Bi(p) ← minj∈[i−5sec,...,i−4sec]Nj(p)‍                          ‍▷‍ Background value for each pixel p
      ‍T ← median(Bi(AF&¬Mi&¬Mi−1))‍                               ‍▷‍ Median temperature of the arena floor
      ‍Di ← Fi − max(T, Bi)‍                                                   ‍▷‍ Difference image. max operation is pixel-wise
      ‍CDi(p) ← Fi(p) − minj∈[i..min(n,i+40∗FPS)] Fj(p)‍           ‍▷‍ Cooldown in the next 40 sec
      ‍BMi ← (Di > ∆TThreshold)&¬Mi&¬Mi−1&(CDi > 1.1◦C)&(CDi > 0.5 ∗ Di)‍    ‍▷‍ Hot Blobs Mask
      ‍BMi ← imclose(BMi, radius = 4)‍                  ‍▷‍ Filling small gaps in blobs mask
       that are fully inside 𝐴𝐹 and not adjacent to mouse’s mask
      with 𝑠𝑖𝑧𝑒 ∈ [2..900]
      blobsList is updated. New blobs are associated with blobs that were detected up to
      30 seconds ago if their masks intersect
end for
return blobs in blosbList that were detected in at least 2 frames

Classifying preliminary detections using an artificial neural network
Preliminary detections are fed to a trained artificial neural network classifier which classifies them 
as either: Urine, Feces, or Background (Figure  2g). We relied on the transformer-based archi-
tecture proposed by Carion et al., 2020. This architecture was designed for object detection in 
RGB images. It receives an RGB image as input and outputs a set of bounding boxes around each 
detected object and the classification of each detection. In brief, this neural network architecture 
consists of a convolutional neural network based on the ResNet architecture proposed by He et al., 
2016, which serves as the backbone and extracts a set of feature vectors from each location in the 
input image. The feature vectors are attached with a position encoding, which is a second feature 
vector that describes the spatial location in the input image, associated with the backbone’s feature 
vector. For each spatial location, the feature vectors from the backbone and the positional encoding 
are summed and fed into an encoder transformer, which uses an attention mechanism to share 
information between the feature vectors from various spatial locations. A decoder block is fed with 

https://doi.org/10.7554/eLife.100739
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the output of the encoder, and an additional set of vectors is denoted as queries. The decoder 
uses several layers of self and cross-attention to share information between queries (self-attention) 
and between the queries and the decoder output (cross-attention). Finally, the encoder outputs a 
feature vector for each input query. This vector is fed into a feed-forward network to compute each 
query’s bounding box and classification. One of the possible classification outputs for each query 
is ‘no object’. We relied on the popular open-source code published by Carion et al., 2020 and 
made a few adjustments. Instead of feeding a single RGB image as input, for each detection in ‍Fi‍ 
we used a series of 78 grayscale image patches cropped around the detection pixel (65 × 65 pixels 
patch) and representing a time window of about [–11s .. 60s] around the detection. For detection in 

‍Fi‍ we used the frames [‍Fi−12∗8, Fi−11∗8, ...Fi−0∗8, ..., Fi+65∗8‍] for classification. We used this relatively 
large time window to capture the cooldown of the feces and urine, movement of feces (which 
are frequently moved by the mouse), or smearing of urine. Additionally, this time window allows 
for capturing the moment of the deposition of the urine or feces, which sometimes occurs a few 
seconds before the preliminary detection (since the mouse may fully or partly occlude the detection 
in the first seconds). In case one or more frames in this sequence are not available (exceeds the time 
limits of the video), a uniform image with a temperature of 22℃ was used instead. Each of the three 
consequent patches in this set was combined into a single RGB patch and was fed to the backbone. 
This allows the use of pre-trained backbone weights as well as reduced run-time in comparison 
to the option of feeding each patch separately to the backbone. Similarly to Carion et al., 2020, 
each of the backbone’s output feature vectors was attached with a positional encoder. However, 
we adjusted the positional encoding to include additional information on the time of each feature 
vector (in addition to its spatial location). To do that, we computed time encoding in the same way 
it was computed by Carion et al., 2020 for encoding the x or y coordinate and concatenated it to 
the x, y position encoding vector. To keep the length of the joint position and time encoding the 
same, we added a fully connected trainable layer that gets the (x, y, t) embedding as input (dim = 
128*3 = 384) and outputs a feature vector with dim = 256 which allows using the rest of the neural 
network and pre-trained weights without additional changes. Lastly, instead of using 100 queries 
as in Carion et al., 2020, we used just a single query to get just the classification of the input set 
of patches and disabled the computation of a bounding box. Since our training set is relatively 
small, we used transfer learning and initialized the learnable weights with the weights published 
by Carion et al., 2020 (weight file: ​detr-​r50-​dc5-​f0fb7ef5.​pth). We used the dc5 (dilated C5 stage) 
option proposed by Carion et al., 2020, which increases the spatial resolution of the backbone’s 
output by a factor of 2 as it may be more suitable for classifying small objects, and used ResNet-50 
as the backbone. We first trained the classifier using 39 train videos (each video contains a single 
experiment and includes both the habituation and trial periods and is of length of roughly 20 min). 
A second round of training used the weights of the first round as initial weights and included an 
additional 58 training videos (a total of 97 training videos).

Training database generation included extraction of (a) Positive examples of urine and feces 
that were manually marked. (b) Forty negative examples (labeled as background) per video in 
randomly selected positions and time (half during habituation and half during trial) that are not 
close in space and time to any manual annotation. (c) Hard negative examples consist of prelim-
inary detected blobs (detected by the heuristic detection algorithm) that are not close in space 
and time to any manual detection. For both types of negative examples, a negative example in 
position ‍xd ‍ and time ‍td ‍ was considered to be close to a manual detection of position ‍xm‍ in time ‍tm‍ 
if ‍distance(xd, xm) < 25pixels‍ and ‍−10sec ≤ td − tm ≤ 30sec‍. For the positive examples, we augmented 
the data by a time shift of [–3s..6s], compensating for possible differences between the manual 
tagging and the preliminary detection time, as well as increasing the training set size. Data augmen-
tation for all examples included a random spatial shift of +–2 pixels, random flip, and rotation of 
90°, 180°, and 270°. Input data was normalized to contain values between [0..255] using linear 
mapping that mapped 10°C to 0 and 40°C to 255. Values that exceeded 0 or 255 were trimmed. 
The first training round (39 training videos) was done for 230 epochs with a learning rate of 1e−5 
for the backbone and 1e−4 for the rest of the weights and a factor 10 learning rate drop after 200 
epochs. The second training round (97 training videos) was done for 50 epochs with a learning rate 
of 1e−5 for the backbone and 1e−4 for the rest of the weights and a factor 10 learning rate drop 
after 40 epochs.

https://doi.org/10.7554/eLife.100739
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Accuracy measurement
The accuracy of automatic detections was evaluated using the following principles: (1) Manually 
tagged urine or fecal deposition is considered correctly detected by the algorithm, if an automatic 
detection with the same label exists at a distance of up to 20 pixels (2.9 cm) and in a time difference of 
up to 15 s. Spatial tolerance is required due to inherent ambiguity in the manual urine tagging process, 
as different observers often mark large spots or long traces of urine differently (see Figure 2d for an 
example of such a trace). Specifically, the detection algorithm might unify adjacent urine spots, tagged 
as multiple urine depositions by human annotators (see e.g. Figure 2—video 1 and Figure 3—figure 
supplement 3). Temporal tolerance is required as the mouse body may cover the deposit or be very 
close to it for a while, thus delaying the time the preliminary detection algorithm detects it. (2) In the 
case described in 1, all automatic detections in this time and space window that got a correct label by 
the algorithm as the manual tagging are not counted as false alarms. (3) In contrast, if only automatic 
detections carrying labels different from the manually tagged deposition exist in the relevant space 
and time around it, then the closest one will be associated with this manual annotation and will be 
counted as misclassification (i.e., urine that was classified as feces or BG and feces that was classified 
as urine or BG), while the others will be counted as false alarms (will be counted in the BG column of 
the confusion matrix).

Comparison with a second human annotator
The task of detecting and correctly classifying urine and feces in thermal videos is also challenging 
for a human annotator. To assess the performance of the DeePosit algorithm and compare it to a 
human annotator, 25 test videos were manually annotated by a second human annotator that marked 
a polygon surrounding each feces or urine spot. The detections of the DeePosit algorithm and of 
the second human annotator were compared to the annotation of the first human annotator (see 
Figure 3f, g).

Comparison with YOLOv8 object detector
We compared our algorithm with a YOLOv8 (Jocher et al., 2023) based algorithm (YOLOv8n archi-
tecture). We trained YOLOv8 on 39 thermal video clips that were manually tagged with bounding 
boxes around each feces or urine spot. An additional 25 videos were annotated with bounding boxes 
for validation. OpenLabeling annotation tool was used for bounding boxes annotation (Cartucho 
et al., 2018). The training was done for 10,000 epochs with default parameters. Weights were initial-
ized with ​YOLOv8n.​pt pre-trained weight file, which was published by Jocher et al., 2023. Output 
weight file with the best accuracy on the validation videos was chosen. As YOLOv8 expects the pixel 
values to be between 0 and 255, temperatures between 10 and 40℃ were linearly mapped to values 
between 0 and 255. As YOLOv8 is designed for 3-channel RGB images, we compared two training 
approaches. The first approach (termed YOLOv8 Gray) used the same thermal image for the R, G, 
and B channels. The second approach used three thermal images from time t, t + 10 s, and t + 30 s, 
where t is the time of the deposition tagging, and fed them to the YOLOv8 classifier as the R, G, and 
B channels. This gives the classifier relevant temporal information that might capture the cool-down 
process, smearing of urine or shift of feces. Training examples included all frames in which a manual 
detection was labeled. Bounding boxes were annotated around all warm and clearly visible urine or 
feces in each of these frames (including old urine and feces that are still warm and clearly visible). In 
addition, 40 randomly selected images (from each training video) with no manual detection in a time 
period of −60…+10 s were added to the training set. During inference, YOLOv8 Gray or YOLOv8 
RGB was activated on each frame of the thermal video. To prevent the same deposition from being 
detected many times, overlapping detections with the same label were unified if no more than 30 s 
passed between them. We compared the accuracy achieved by YOLOv8 Gray and YOLOv8 RGB with 
the DeePosit algorithm that was trained on the same 39 training videos. The results are shown in 
Figure 3h–j.

Model evaluation on mice of a different strain (C57BL/6)
To evaluate the usability of our method in a different strain of mice and a different setting, we 
conducted 10 SP and 10 SxP experiments with C57BL/6 black mice using a white Plexiglass box arena 
(37 cm × 22 cm × 35 cm). We used the same classifier and the same preliminary detection parameters. 

https://doi.org/10.7554/eLife.100739
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Note that the training set does not include C57BL/6 mice videos or videos with white arenas (see 
Figure  3—figure supplement 1, Figure  4—figure supplement 1, Figure  5d, e, and Figure  5—
figure supplement 1d, e for results).

Statistical analysis
We used a two-sided Wilcoxon rank sum test (Matlab’s ranksum function) for all pairwise compari-
sons. Rank sum p-value equal to or smaller than 0.1, 0.05, 0.01, and 0.001 was marked with #, *, **, 
and ***, respectively. In addition, since some of the data is zero-inflated (many mice do not deposit 
urine or feces in the relevant measured period), we used a two-way Chi-square test to compare the 
distribution of zeros and non-zeros in the male group versus the female group in Figure 6 and in 
Figure 6—figure supplement 1. The two-way Chi-square test was implemented using Matlab (see 
code in Appendix 1). p-value equal or smaller than 0.1, 0.05, 0.01, and 0.001 was marked with !, +, 
++, and +++, respectively, and was mentioned to the left side of the ranksum p-value symbol (i.e, 
the notation +/** means that two-way Chi-square test resulted in p-value ≤0.05 and the ranksum test 
resulted in p-value ≤0.01). For the habituation versus trial comparison (Figure 5a, b, Figure 5—figure 
supplement 2), and the side preference analysis (Figure 4—figure supplement 2), mice with zero 
urine detections across all periods of the same test were ignored. The same was done for the feces 
analysis. Lastly, we used Matlab’s kruskalwallis function for the Krusukal–Wallis test, which was used to 
examine the effect of test type (SP, SxP, and ESPs) on the dynamics of the urine and feces rate (Table 1) 
and area (Appendix 1—table 1). Additional statistical data for the figures is available. No mouse 
selection was done, but several videos in which the arena was not positioned well below the camera 
were excluded. Two cohorts of CD1 mice were used, each of which included at least eight mice and 
was tested by a different experimenter.
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Appendix 1
Code for computing Two Way Chi-Square Test which was used to compare the distribution of active 
mice (with at least one detection) in males vs females.

% Compute two way chi square test for 2x2 table
%
% Hypothseis H0: there is no relation between gender and the distribution 
of zeros .
% Hypothseis H1: there is a relation between gender and the distribution of 
zeros .
%
% Inputs :
% valsMales - a vector of length 2 that contains : [zeros count , non zeros 
count] for males .
% valsFemales - a vector of length 2 that contains : [zeros count , non 
zeros count] for females.
%
% Outputs :
% pVal - p value . A value lower than 0.05 suggests that the hypothesis H0 
should be rejected .
% chiStat - statistic of the chi square test .
% df - degree of freedom (equals 1 for 2x2 tables).
%
function [pVal , chiStat ,df] = TwoWayChiSqrTest (valsMales , valsFemales)
if length (valsMales)~=2 || length (valsFemales)~=2
‍‎error (’input vectors should have length =2 ’)
end
sumMales = sum (valsMales);
sumFemales = sum (valsFemales);
sumAll = sumMales + sumFemales ;
sum1 = valsMales (1) + valsFemales (1) ;
sum2 = valsMales (2) + valsFemales (2) ;
expectedFreqMales = [sumMales *(sum1 / sumAll), sumMales *(sum2 / sumAll)];
expectedFreqFemales = [sumFemales *(sum1 / sumAll), sumFemales *(sum2 / 
sumAll)];
chiStatMales = sum ((valsMales - expectedFreqMales).^2 ./ 
expectedFreqMales);
chiStatFemales = sum ((valsFemales - expectedFreqFemales).^2 ./ 
expectedFreqFemales);
chiStat = chiStatMales + chiStatFemales ;
df = 1;
pVal = 1- chi2cdf (chiStat ,df);

Appendix 1—table 1. The effect of the test on the urine and feces area.
Kruskal–Wallis test was used to check if the test type (SP, SxP, and ESPs) affects the area of urine or 
feces. p-value equal to or smaller than 0.1, 0.01, 0.001 was marked with #, **, ***, respectively. For 
male mice, n = 24, 28, 21 for SP, SxP, and ESPs. For female mice, n = 15, 16, 17 accordingly.

Measurement Habituation, minutes 1–4 Habituation, minutes 11–14 Trial, minute 1 Trial, minutes 2–4

Male urine 
area 0.0003*** 0.3436 0.0011** 0.0614#

Female urine 
area 0.3847 0.374 0.399 0.3124

Appendix 1—table 1 Continued on next page

https://doi.org/10.7554/eLife.100739
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Measurement Habituation, minutes 1–4 Habituation, minutes 11–14 Trial, minute 1 Trial, minutes 2–4

Male feces 
area 0.0098** 0.3315 0.2738 0.8938

Female feces 
area 0.2352 0.5138 0.1553 0.571

Appendix 1—table 1 Continued
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