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Abstract

In many mammals, including rodents, social interaction is accompanied by active urination,
also known as micturition, for spatial scent marking. Urine and fecal deposits were shown to
contain multiple chemosensory cues carrying information regarding the identity, strain, and
social rank, as well as the physiological and hormonal conditions of the individual. Moreover,
scent marking was shown to be social context-, state-, and experience-dependent. Thus,
analyzing scent-marking activity during social interactions may contribute to understanding
the structure of mammalian social interactions in health and disease. So far, however, such
analysis faced multiple technical obstacles. Mainly, the commonly used void spot assay relies
on detecting urine traces left over a filter paper on which the social interaction occurred;
thus, it lacks temporal information and is prone to artifacts such as urine smearing. Recently,
several studies employed thermal imaging for spatiotemporal analysis of scent marking, as
urine and feces are deposited at body temperature and get rapidly cold afterward. This
analysis, however, was done so far manually, which made it time-consuming and prone to
bias by the observer. Here, we combine thermal imaging, computer vision tools, and an open-
source algorithm incorporating a transformer-based video classifier to automatically detect
and classify urine and fecal deposits made by male and female mice during several social
behavior tests. We found distinct dynamics for urine and fecal depositions in a test- and sex-
dependent manner, suggesting two distinct processes of scent marking in mice. The method
and tools presented here allow researchers an easy, efficient, and unbiased spatiotemporal
analysis of scent marking during behavioral experiments.
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eLife assessment

This manuscript presents a valuable machine-learning-based approach to the
automated detection of urine and fecal deposits by rodents, key ethological
behaviors that have traditionally been very poorly studied. The strength of evidence
for their claim, however, that the method provides "easy, efficient, and unbiased
spatiotemporal analysis of scent marking during behavioral experiments" is
incomplete. In particular, there were concerns about the generalizability of the
approach, the relatively limited detection capabilities of the method, and a lack of
rationale for specific design choices. This manuscript could be of interest to
researchers in animal behavior, neuroscience, and automated animal tracking.

https://doi.org/10.7554/eLife.100739.1.sa4

Introduction

In many mammalian species, including rodents, social interactions are accompanied or followed
by events of active urination, also known as micturition or voiding activity Arakawa et al.
(2008)     . Multiple studies demonstrated that urine and fecal deposits comprise many
chemosensory social cues, which carry information about the individual, such as its species, sex,
social rank, and identity, as well as its reproductive and health conditions Bigiani et al. (2005)     .
These chemosensory signals include various metabolites, as well as many proteins such as major
urinary proteins Brennan (2004)     . Thus, by depositing urine spots and feces in its environment,
the individual also deposits social information, which may be later perceived by other individuals
and modify their future social interactions with this individual Hurst and Beynon (2004)     . In
other words, the use of urine and fecal deposits provides individuals with a way to defend
resources such as territory, advertise availability to mates, and communicate with other
conspecifics. Specifically, in territorial species, urination is thought to mark the territory of the
individual, thus functioning as a spatiosocial scent-marking activity Brennan and Kendrick
(2006)     . Moreover, in rodents, urination activity was shown to be strongly influenced by the
individual’s internal state, social rank, social context, and previous social experience Desjardins et
al. (1973)     ; Hyun et al. (2021)     . Therefore, assessing scent marking activity may provide
valuable information on the individual’s social behavior. Specifically, deficits in urine depositing
may reflect atypical social behavior in rodent models of various diseases (see Wöhr et al. (2011)     
for example) and thus may be used for testing potential treatments on such models.

Urination pattern is traditionally analyzed by the void spot assay, which uses filter paper placed
on the arena’s floor for analyzing urine deposit distribution after the end of the experiment Wolff
and Powell (1984)     ; Higuchi and Arakawa (2022)     . However, this analysis usually lacks the time
dimension, is affected by urine smearing and spreading across the arena floor due to the mouse
movement (see Figure 2 d,e     ), and is limited in detecting overlapping urine spots. Another
limitation is that the filter paper may be torn down by the mouse during the behavioral
experiment. Recently, Dalghi et al. (2023)      used a setup that includes filter paper on the arena
floor, UV light, several cameras, and a manual video annotation to get the time of urination events.
Several other studies Verstegen et al. (2020)     ; Miller et al. (2023a)      used infrared (IR) cameras
for urine detection, as urine is deposited in body temperature and can be seen in the thermal
image. However, fecal deposits are also emitted in body temperature, making it difficult to
distinguish between feces and small urine deposits using thermal imaging. While using an IR
camera solves the issue of temporal analysis, previous studies using this mean relied on manual
analysis of the urine spots from thermal video clips, which made the analysis process time-
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consuming and subjected to observer bias. To cope with these limitations, we developed an open-
source computer vision algorithm to automatically detect urine and feces from thermal video
clips. Our detection and classification algorithm is based on a combination of a heuristic algorithm
used for the preliminary detection of bright (warm) blobs in the IR video and a trainable video
classifier used to classify the preliminary detections as either urine, feces, or background (BG, i.e.,
not urine or feces). We demonstrate the efficiency of this tool by analyzing the temporal dynamics
of both urine and fecal depositions in male and female CD1 (ICR) mice conducting three social
behavior tasks. We found that urine and feces depositions show distinct dynamics across the
various tests in a sex- and test-dependent manner.

Methods and Materials

Animals
Subject animals were adult (12-14 weeks old) male and female wild-type offspring derived from
breeding couples of Gtf2i+/Dup with a CD1 (ICR) genetic background Mervis et al. (2012)      mice,
bred and grown in the SPF mouse facility of the University of Haifa. Stimulus animals were adult
(12-14 weeks old) male and female CD1 mice purchased from Envigo (Rehovot, Israel). All mice
were housed in groups of 3-5 in a dark/light 12-hour cycle (lights on at 7 pm), with ad libitum food
and water under veterinary inspection. Experiments were performed in the dark phase of the
dark/light cycle. All experiments were approved by the University of Haifa ethics committee
(Reference #: UoH-IL-2301-103-4).

Setup and Video Acquisition
The experimental setup is based on the setup described in Netser et al. (2019)     . Briefly, a black
Plexiglass box arena (37 cm x 22 cm x 35 cm) was placed in a sound-attenuated chamber. A visible
light (VIS) camera (both Flea3 and Grasshopper3 models manufactured by Teledyne FLIR were
used, both with a wide-angle lens, rate of 30 frames per second, and USB3 interface) and a long
wave infrared (IR) camera (Opgal’s Thermapp MD with 6.8 mm lens, 384×288 pixels at 8.66 frames
per second (FPS)) were placed about 70 cm above the arena’s floor. The IR camera was designed to
measure human skin temperature and outputs the apparent temperature for each pixel. Raw pixel
values were converted to Celsius degrees using the formula supplied by the manufacturer. We
acquired the camera videos using custom-made Python software (code is available at: https://
github.com/davidpl2/DeePosit     ) that used the manufacturer’s SDK (SDK version: EyeR-op-SDK-x86-
64-2.15.915.8688-MD). To improve the accuracy of and reduce possible drifts in the measured
temperature, a high-emissivity blackbody (Nightingale BTR-03 blackbody by Santa Barbara
Infrared, Inc.) was placed in the camera’s field of view and was set to 37°C. During analysis, the
offset between the blackbody apparent temperature and 37°C was subtracted from the image. To
improve image quality, we turned on the camera at least 15 min before the beginning of the
experiment (this allows the camera’s temperature to get stable). In addition, to reduce pixel non-
uniformity, we captured 16 frames of a uniform surface (a piece of cardboard placed in front of
the camera) before each test. These images were then averaged, and the average image’s mean
was subtracted from it to get a non-uniformity image with zero mean. The non-uniformity image
was then subtracted from each image in the video to achieve better pixel uniformity.

Social Behaviour Paradigm
We used three distinct social discrimination tests, as previously described in Mohapatra et al.
(2024)     . Briefly, all tests consisted of 15 min of habituation, during which the subject mouse got
used to the arena with empty triangular chambers (12 cm isosceles, 35 cm height) located at
randomly chosen opposite corners. Each triangular chamber had a metal mesh (18 mm x 6 cm; 1
cm x 1 cm holes) at its bottom, through which subject mice could interact with the stimuli. After
habituation, the empty chambers were removed and chambers with stimuli were introduced into
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the arena for the 5-minute trial. In the Social Preference (SP) test, a novel (i.e., unfamiliar to the
subject mouse) sex-matched stimulus mouse was placed in one chamber, whereas an object
stimulus (a Lego toy) was placed in the opposite chamber. In the Sex Prefence (SxP) test, a novel
female mouse was placed in one chamber while a novel male was placed in the opposite chamber.
In the ESPs test, a novel stressed (restrained in a 50 ml plastic tube for 15 minutes before the test)
sex-matched mouse was introduced to one chamber of the arena while a novel naïve mouse was
placed in the opposite chamber.

Behavioral Analysis
VIS video clips were analyzed using TrackRodent (https://github.com/shainetser/TrackRodent     ), as
previously described in Netser et al. (2017)     

Urine and Feces Detection Algorithm
The detection algorithm consists of two main parts. A preliminary heuristic detection algorithm
detects warm blobs. These blobs are then fed into a machine learning-based classifier, which
classifies them as either urine, feces, or background (i.e., no detection). The algorithm’s code is
available here: https://github.com/davidpl2/DeePosit     .

Manual Inputs
A graphical user interface (GUI) was developed in Matlab to support all of the required manual
annotations. Each video went through a manual annotation of the arena’s floor, the area of the
blackbody, and a specification of the first and last frames of both the habituation and trial periods.

These two periods were separated by a 30-second period during which the stimuli were
introduced to the arena, which was excluded from the analysis. Also, the arena side of each
stimulus (for example, the male and female sides in the SxP test) was defined as the half of the
arena close to this stimulus’s chamber. To generate the train and test sets, a human annotator
manually tagged urine and fecal deposition events in 64 video clips, of which 39 were used for
training and 25 for testing. A single click was used to mark the center of each urine or fecal deposit
in the first frame where it was visible. The training set included 235 urine annotations and 170
feces annotations. The test set included 56 urine annotations and 90 feces annotations. Additional
details can be found in the software’s manual.

Preliminary Detection of Hot Blobs
Urine and fecal deposits appear as hot (bright) blobs in the first seconds after deposition. After a
cool-down period, which takes about 30-60 seconds for feces and small urine spots and up to
∼four minutes for large urine spots, feces and urine appear as dark spots in the thermal image.
The preliminary detection relies on these effects (See pseudo-code in Algorithm 1 below). It uses
image subtraction to search for hot blobs that appear in the video and cool down later. We
generate a background image Bi for each frame Fi to detect new hot blobs. Subtraction of Bi from
Fi generates an image in which the mouse pixels and new (warm) urine and feces pixels appear
bright. We set B0 as the per-pixel minimum of the first 20 seconds of video (note that habituation
and trial videos are analyzed separately to account for possible minor shifts in the arena’s
position). We assume that the mouse is brighter than the arena’s floor and that the mouse moves
during the first 20 seconds, so each pixel will get the arena’s floor value at least once during this
time.

For i > 0 we compute Bi as the minimum of images Nj, j ∈ [i − 44, …, i − 36] (this roughly matches
time range [i−5sec, …, i−4sec]) where Nj is an image in which the mouse pixels were replaced by
the last known values from before the time that the mouse occupied these pixels. We set Nj<=0 = B0.
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To compute the mouse mask at frame i, Bi−1 is subtracted from F i. The subtraction result is dilated
by Matlab’s imdilate function with a structuring element of a disk of a radius of 2 pixels and then
compared against a threshold of 1°C to get a binary mask of the pixels that are warmer than the
arena’s floor. Connected regions are then computed using Matlab’s bwlabel function and the
connected region with the largest intersection with the arena’s floor is considered as the mask of
the mouse (denoted Mi).

Ni is then computed by taking Fi values for the pixels outside Mi and taking the values of Ni−1 for
the mouse containing pixels: Ni = Ni−1 ∗ Mi +Fi ∗ (1−Mi) where * denotes pixel-wise multiplication.
The difference image Di is computed by: Di = Fi − max(T, Bi) where T is the arena’s floor median
temperature, computed by T = median(Bi(AF &¬Mi&¬Mi−1)) where AF is a mask of the arena’s floor,
& is pixel-wise AND operation and ¬ is pixel-wise NOT operations. Using T prevents higher
detection sensitivity in darker regions of the arena floor (regions in the arena’s floor that are
covered in cooled-down urine appear darker than dry regions of the arena’s floor, see Figure
2e     ).

The cooldown rate CDi is computed by taking the per pixel minimum of the frames in the next 40
seconds following Fi and subtracting it from Fi.

The hot blobs mask BMi is computed by taking the pixels for which Di > 1.1°C and not included in
Mi and Mi−1 and for which the CDi > 1.1°C and CDi > 0.5 ∗ Di. We ask for the cooldown to be at least
half of the increase in the temperature but not more than that since very large urinations cool
down slower and might take more than 40 seconds to cool down fully. We excluded pixels in Mi−1
and not just Mi since the IR sensor has a response time which might cause pixels included in Mi−1
to be slightly brighter.

BMi goes through a morphological close operation using Matlab’s imclose function with a structure
element of a disk with a radius of 4 pixels. This causes any nearby drops of urine to unify to a
single detection. Blobs that overlap pixels outside the arena’s floor or touch the mouse mask are
ignored to avoid detection on darker areas of the mouse (mostly the tail), reflections from the
arena’s wall, and detections due to a stimulus mouse which sometimes stick his nose throughout
the barrier net of the chamber. Also, blobs with a size < 2 pixels or larger than 900 pixels are
ignored (pixel size is roughly 0.02cm2).

Blobs that intersect previously detected blobs are considered to be the same detection if no more
than 30 seconds passed from the last frame in which the previous detection was last detected. A
unified detection mask is computed each time a detection is associated with a previous detection.
This allows reduction of false alarms which might be caused by the smearing of still-hot urine. If
no such intersection exists, a new preliminary detection is added to the list of detections. A blob
should be detected in at least two frames to be included in the output detections. The
representative coordinate, frame, and mask for each detected blob were chosen by taking the pixel
with the maximum intensity inside the blob in all frames it was detected and the mask that
matches this frame. Usually, the selected frame for each blob is the first frame of the detection (as
the detection cools down, the maximum intensity is usually in the first detected frame). Still, it
might be another frame if the detection was partly occluded by the mouse tail or if a second urine
event occurred in the same place during the relevant time frame. The output detections are fed
into a classifier, which will be described next.

Note that we used relatively low thresholds for the detection (1.1°C) since we wish to detect small
urine deposits as well. The detection threshold is slightly higher than the mouse detection
threshold (1°C) to avoid false defections on the subject mouse body.

https://doi.org/10.7554/eLife.100739.1
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Algorithm 1

Preliminary Detection of Hot Blobs
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Classifying Preliminary Detections
Using an Artificial Neural Network
Preliminary detections are fed to a trained artificial neural network classifier which classifies
them as either: Urine, Feces or Background (Figure 2g     ). We relied on the transformer-based
architecture proposed by Carion et al. (2020)     . This architecture was designed for object
detection in RGB images. It receives an RGB image as input and outputs a set of bounding boxes
around each detected object and the classification of each detection. In brief, this neural network
architecture consists of a convolutional neural network (CNN) based on the ResNet architecture
proposed by He et al. (2016)     , which serves as the backbone and extracts a set of feature vectors
from each location in the input image. The feature vectors are attached with a position encoding,
which is a second feature vector that describes the spatial location in the input image, associated
with the backbone’s feature vector. For each spatial location, the feature vectors from the
backbone and the positional encoding are summed and fed into an encoder transformer, which
uses an attention mechanism to share information between the feature vectors from various
spatial locations. A decoder block is fed with the output of the encoder, and an additional set of
vectors is denoted as queries. The decoder uses several layers of self and cross-attention to share
information between queries (self-attention) and between the queries and the decoder output
(cross-attention). Finally, the encoder outputs a feature vector for each input query. This vector is
fed into a feed-forward network (FFN) to compute each query’s bounding box and classification.
One of the possible classification outputs for each query is “no object”. We implemented the
popular open-source code published by Carion et al. (2020)      with few adjustments. Instead of
feeding a single RGB image as input, for each detection in Fi we used a series of 78 grayscale image
patches cropped around the detection pixel (65×65 pixels patch) and representing a time window
of about [-11sec … 60sec] around the detection. For detection in Fi we used the frames [Fi−12∗8,
Fi−11∗8, …Fi−0∗8, …, Fi+65∗8] for classification. We used this relatively large time window to
capture the cooldown of the feces and urine, movement of feces (which are frequently moved by
the mouse), or smearing of urine. Additionally, this time window allows for capturing the moment
of the deposition of the urine or feces, which sometimes occurs a few seconds before the
preliminary detection (since the mouse may fully or partly occlude the detection in the first
seconds). Each of the three consequent patches in this set was combined into a single RGB patch
and was fed to the backbone. This allows the use of pre-trained backbone weights as well as
reduced run-time in comparison to the option of feeding each patch separately to the backbone.
Similarly to Carion et al. (2020)     , each of the backbone’s output feature vectors was attached with
a positional encoder. However, we adjusted the positional encoding to include additional
information on the time of each feature vector (in addition to its spatial location). To do that, we
computed time encoding in the same way it was computed by Carion et al. (2020)      for encoding
the x or y coordinate. To keep the length of the joint position and time encoding the same, we
added a fully connected trainable layer that gets the (x,y,t) embedding as input (dim = 128*3=384)
and outputs a feature vector with dim=256 which allows using the rest of the neural network and
pre-trained weights without additional changes. Lastly, instead of using 100 queries as in Carion et
al. (2020)     , we used just a single query to get just the classification of the input set of patches and
disabled the computation of a bounding box. Since our training set is relatively small, we used
transfer learning and initialized the learnable weights with the weights published by Carion et al.
(2020)      (weight file: detr-r50-dc5-f0fb7ef5.pth). We used the dc5 (dilated C5 stage) option
proposed by Carion et al. (2020)     , which increases the spatial resolution of the backbone’s output
by a factor of 2 as it may be more suitable for classifying small objects, and used ResNet-50 as the
backbone.

We trained the classifier using 39 train videos and measured accuracy using an additional 25 test
videos. Each video contains a single experiment and includes both the habituation and trial
periods (each video lasts roughly 20 minutes). Training database generation included extraction
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of: a. Positive examples of urine and feces that were manually marked. b. forty negative examples
(labeled as background) per video in randomly selected positions and time (half during
habituation and half during trial). c. hard negative examples consist of preliminary detected blobs
that are not close in space and time to any manual detection. A preliminary detection in position
xd and time td was considered to be close to a manual detection of position xm in time tm if
distance(xd, xm) < 25pixels and −10sec ≤ td − tm ≤ 30sec. For the positive examples, we augmented
the data by a time shift of [-3..6] sec, compensating for possible differences between the manual
tagging and the preliminary detection time as well as increasing the training set size. Data
augmentation for all examples included a random spatial shift of +-2 pixels, random flip, and
rotation of 90, 180, and 270 degrees. Input data was normalized to contain values between [0..255]
using linear mapping that mapped 10°C to 0 and 40°C to 255. Values that exceeded 0 or 255 were
trimmed. The training was done for 230 epochs with a learning rate of 1e-5 for the backbone and
1e-4 for the rest of the weights and a factor 10 learning rate drop after 200 epochs.

Statistical Analysis
We used a two-sided Wilcoxon rank sum test (Matlab’s ranksum function) for all pairwise
comparisons. Rank sum p-value equal to or smaller than 0.1, 0.05, 0.01, 0.001 was marked with #, *,
**, ***, respectively. In addition, since some of the data is zero-inflated (many mice do not deposit
urine or feces in the relevant measured period), we used a two-way chi-square test to compare the
distribution of zeros and non-zeros in the male group vs. the female group in Figure 5      and in
Figure 5— figure Supplement 1     . The two-way chi-square test was implemented using Matlab
(see code in Listing 1). P-value equal or smaller than 0.1, 0.05, 0.01, 0.001 was marked with !, +, ++,
+++, respectively, and was mentioned to the left side of the ranksum p-value symbol (i.e, the
notation +/** means that two-way chi-square test resulted in p-value<=0.05 and the rank sum test
resulted in p-value <= 0.01). For the habituation vs. trial comparison (Figure 4a-b      and Figure 4
—figure Supplement 1     ), and the side preference analysis (Figure 6     ), mice with zero urine
detections across all periods of the same test were ignored. The same was done for the feces
analysis. Lastly, we used Matlab’s kruskalwallis function for the Krusukal-Wallis test, which was
used to examine the effect of test type (SP, SxP, ESPs) on the dynamics of the urine and feces (Table
1      and Supplementary Table 1     ). Additional statistical data for the figures is available at https:
//github.com/davidpl2/DeePosit/FigStat     .

Results

Social Discrimination
We analyzed the time subject mice spent investigating each stimulus during the various tests
(Figure 1     ), using the video clips recorded via the visible light (VIS) camera. Both male and
female subject mice showed the behavior expected from CD1 mice, as previously described by us
Kopachev et al. (2022)     . For males, we found a significantly higher investigation time towards the
social stimulus as compared to the object in the SP test, towards the opposite sex as compared to
the same sex stimulus mouse in the SxP test, and towards the stressed as compared to the naïve
mouse in the ESPs test. Females showed similar behavior, except for the SxP test, where they
showed no preference for any of the two stimuli. In accordance with our previous study Netser et
al. (2017)     , in all cases, the preference towards a given stimulus was reflected only by long (> 6s),
but not by short (≤ 6s) investigation bouts (Figure 1     ). Thus, in terms of social behavior, the
subject mice behaved as expected.

https://doi.org/10.7554/eLife.100739.1
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Figure 1.

Investigation time and bout duration across sexes and tests. The first row shows the arena’s setup, while the second and
third rows show the mean (±SEM) time dedicated by male (n=36, blue bars) and female (n=35, red bars) mice to investigate
each stimulus during the (a) SP, (b) SxP and (c) ESPs tests. The two leftmost bars in each panel show the total investigation
time, while The two middle bars show the time spent on short (≤6s) investigation bouts, and the two rightmost bars in each
panel show the time spent on long (>6s) investigation bouts.
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Urine and Feces Detection Accuracy
The experimental setup, including the VIS and IR cameras, is schematically shown in Figure 2a     .
Unlike the VIS camera (Figure 2b     ), the IR camera captured the warm urine and feces drops soon
after they were deposited (Figure 2c     ). This allowed us to overcome several caveats of the void
spot assay. For example, we could tolerate smeared urine spots (Figure 2d-e     ) and identify the
time of each deposition event (See Video 1, Video 2 and Figure 2     —video 1). For the generation of
training and testing data sets, a human annotator manually tagged urine and fecal deposition
events in 64 video clips, of which 39 were used for training the model and 25 for testing. The
detection algorithm (termed DeePosit) consists of two main parts. A preliminary heuristic
detection algorithm detects warm blobs (Figure 2f     ). These blobs are then fed into a machine
learning-based classifier (Figure 2g     ), which classifies them as either urine, feces, or background
(i.e., no detection). For more details, see the Methods section. The confusion matrix for the testing
dataset showed 78.6% recall rate for the detection of urine deposits and 83.3% recall rate for fecal
deposits Figure 2h      and Figure 2—figure Supplement 1     . A manually tagged urine or fecal
deposition was considered correctly detected if an automatic detection with the same label exists
in a distance of up to 20 pixels and in a time difference of up to 15 seconds. The spatial tolerance is
required due to ambiguity in the tagging process of urine, as some manual taggers might mark
large spots or long traces of urination differently, mainly if a trace of urine includes several spots
(see Figure 2d      for an example). Moreover, the detection algorithm might unify adjacent urine
spots while being tagged as two different urine depositions by human annotators (see Figure
2     —video 1 and Supplementary Figure 1 for examples). The temporal tolerance is required since
the mouse body may cover the deposit or be very close to it for a while, thus delaying the time the
preliminary detection algorithm detects it. Note that for large urine deposits, the classification
accuracy is higher (Figure 2—figure Supplement 1     ), probably because it is more
distinguishable from fecal deposits, which are always small. See Figure 2     —video 1 and
Supplementary Figure 1b for examples of mistakes made by the detection algorithm in the test
videos, which are further discussed in the Discussion section.

Distinct Dynamics of Urine and Fecal Depositing Activities
Figure 3a,b      shows the raw results of urine and fecal deposit detection by the DeePosit algorithm
for each mouse as a function of time across all three tests, for both male (Blue symbols) and female
(red symbols) subject mice. The symbols representing the various types of deposits are also labeled
with black dots, according to the arena side of each deposition (see figure legend). These raw
results were further analyzed by computing the average number of urine or fecal deposition
events, as well their average area (cm2), per minute Figure 3c,d     , which was calculated since
urine deposit size might vary significantly between distinct events and conditions Wegner et al.
(2018)     . Generally, the event rate and deposition area showed similar trends. As apparent, urine
and feces depositing activities showed distinct dynamics: feces depositing activity showed a single
clear peak in all cases in the early stage of habituation. In contrast, urine deposition was
characterized by two peaks, which were not visible in the SP test but appeared in the SxP and got
even stronger in the ESPs test. The first urination peak occurred in males at the early habituation
stage, parallel to the peak in feces deposition. The second urination peak occurred in both males
and females after stimuli insertion into the arena. For statistical analysis of these dynamics, we
compared the mean urine and fecal deposition rate between three periods: the beginning of
habituation (habituation minutes 1-5), the end of habituation (habituation minutes 11-14), and the
trial - after stimuli introduction (trial minutes 1-4) (Figure 4a,b     ). For both males and females,
we found a significantly higher level of fecal deposition at the beginning of habituation than at the
end in all tests (except for SP in females, when only a trend was observed). In contrast, a similar
comparison of urine deposition showed that its level was significantly higher during early
habituation than at the end only for males in the SxP and ESPs tests. A similar elevation in urine
deposition, specifically during the SxP and ESPs tests, was observed during the trial, compared to
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Figure 2.

The experimental setup and analysis method The experimental setup (a) includes a visible light (VIS) camera, an infrared (IR)
camera, and a blackbody set to 37°C. VIS (b) and IR (c) images that were captured at the same moment, a short time after a
urine deposition, exemplify that, as the urine is still warm, it appears as highly contrasted blob in the IR image but not in the
VIS one. Large urine spots, such as the one shown in (d), may be smeared across the arena’s floor (e), which is one limitation
of the use of filter paper for quantifying urination at the end of the experiment. The preliminary detection algorithm is based
on subtracting a background image from each frame in the video (f), which allows the detection of hot blobs reflecting the
animal itself and urine and feces deposits. The detected blobs are then classified using a transformer-based artificial neural
network (g), which gets as its input a time series of patches cropped around the detection and provides its classification as an
output. Each three patches in that time series are merged into a single RGB image (see methods). In the confusion matrix
presenting the accuracy of the full pipeline for test videos (h), the “Miss” row counts the events that were not detected by the
preliminary hot blobs detection and, hence, were not fed to the classifier. The BG (background) column counts the number of
automatic detections for which no matching manually tagged event exists in the relevant space and time window. See
Methods for more details Figure 2—figure supplement 1     . Accuracy for small and large detections. Figure 2     —video 1.
Video for the events in the confusion matrix. Each part of the video matches a cell in the confusion matrix (h) and shows the
events included in this cell (up to 48 events). Each event is shown in a 65×65 pixel window from −11 seconds before the event
to +60 seconds afterward (similar to the classifier input). The video shows both the manual annotation and the automatic
detection that was matched with it (shown side by side). Note that there are no automatic detections for the “Miss” row of
the confusion matrix and no manual annotation for the BG column of the confusion matrix. The video plays at X3 speed.
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the habituation end, for both males and females. Interestingly, we found an opposite trend for
fecal deposits, with a significant decrease in fecal deposition rate during the trial in the ESPs test
for males and the SxP test for females (Figure 4a,b     ). Similar results were found for urine and
fecal deposit areas (Figure 4—figure Supplement 1     ). Moreover, similar trends were observed
when the proportion of mice actively depositing urine or feces during each period was calculated
for each case (Figure 4c     ). These data reveal distinct dynamics for urine and feces deposition
activities during the various tests in a sex- and test-specific manner.

Sex-Dependent Differences During the Habituation Period
We used two types of statistical tests to compare males and females. A two-sided Wilcoxon rank
sum test (significance marked by *) was used for all pairwise comparisons. In addition, since some
of the data is zero-inflated (many mice did not deposit urine or feces at all during the relevant
period), we used a two-way chi-square test (significance marked by +) to compare the distribution
of zeros and non-zeros in the male group vs. the female group. A test-dependent significant
difference between males and females was found in the first 5 minutes of habituation (Figure
5a     ). On the first day of experiments (the SP test), males and females showed a low urination rate
at the first 5 minutes of habituation, with no significant difference between them. However, in the
next two testing days (SxP and ESPs tests), when the mice were already familiar with the arena (as
they had already gone through the SP test) we found a significantly higher rate and area of urine
deposition in males compared to females (Figure 5a      and Figure 5—figure Supplement 1 a     ).
This difference is more significant in the last experiment (the ESPs test), where we also found a
significant difference between males and females in the distribution of urinating mice (mice with
at least one urine detection in habituation minutes 1-5). As for fecal deposition, males showed a
trend towards a higher level in this period across all tests. During the last stage of habituation, we
found a significant difference between males and females only for the ESPs test, with males
showing higher levels of both urine and fecal deposition rate (Figure 5b     ), as well as area
(Figure 5—figure Supplement 1 b     ).

Sex-Dependent Differences During the Trial Period
For statistical comparison between males and females during the trial, where an initial peak was
observed in some cases (Figure 3c-d     ), we divided it into two periods, the first minute and
minutes 2-4, and averaged the results of each period separately. As apparent in Figure 5c-d      and
Figure 5     — figure Supplement 1 c-d, the urine deposition results of the trial’s first minute were
similar to those of the early stage of habituation, with no difference in the SP test, which was
conducted first, and a significantly higher level of urination events for males vs. females in the SxP
and ESPs tests, which were conducted later. For trial minutes 2-4, we found a significant difference
between males and females only for the ESPs test. No difference was observed for fecal deposition
in any of the tests trial periods.

Male Urine and Fecal Deposition Rates are Test-Dependent
Since the data so far suggest a dynamic change from the SP to the SxP and ESPs tests specifically
for males, we checked the effect of test type (SP, SxP, ESPs) on the urine and fecal deposition
dynamics using Kruskal-Wallis test Table 1      and supplementary Table 1     . Males’ urine and
fecal deposition rates (Table 1     ) and area (Supp Table 1     ) showed a significant effect of the test
type, with urination showing this effect during early habituation and trial, while fecal deposition
showing such effect at both early and late habituation, but not during the trial. No significant
effect was found for females.

https://doi.org/10.7554/eLife.100739.1
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Figure 3.

Urine and fecal deposition detection results across tests.

Each circle represents a single detection of urine deposition (a), while each + represents a single detection of fecal deposition
(b). Green lines mark the start and end of habituation and the end of the trial. The vertical black line at time=0 marks the
stimuli’s introduction and the trial period’s start. The vertical dotted line marks 4 minutes after the beginning of the trial. The
short vertical black lines mark the end of minute 14 of the habituation. A black dot in the center of a circle or a + sign marks
that this detection is on the side of stimulus1 (preferred stimulus), defined as the social stimulus in the SP trial, the female in
the SxP trial, and the stressed mouse in the ESPs trial. Dynamics graphs show mean rate (c) and mean area (d) per minute of
urine and feces. Error bars represent standard error.
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Figure 4.

Comparison between test periods.

The mean rate of urine and fecal deposition during habituation start (minutes 1-5), habituation end (minutes 11-14), and trial
(minutes 1-4) for males (a) and females (b). (c): Percent of active mice (mice with at least one detection) across tests during
the same periods as above. Figure 4—figure supplement 1     . Urine and fecal depositions area during habituation start,
habituation end, and trial.
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Figure 5.

Comparison of deposition rates between sexes.

The mean rate of urine and fecal depositions in males (blue bars) vs. females (red bars) during early (minutes 1-5) and late
(minutes 11-14) minutes of habituation and during the first minute and minutes 2-4 of the trial. A significant difference
between the mean rate of urine or fecal depositions (Wilcoxon rank sum test) is marked with * (or # for 0.05<p-value ≤0.1),
and a significant difference in the distribution of non-depositing animals (Chi-square test) is marked with + (or ! for 0.05<p-
value ≤0.1). Figure 5     —figure supplement 1. Comparison of deposition areas between sexes.
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Figure 6.

Urine and fecal deposition side preference.

A comparison of the mean ±SEM rate ((a) and (b)) and area ((c) and (d)) of urine (two left bars in each panel) and fecal (two
right bars in each panel) depositions made by male (blue bars) and female (red bars) subject mice in each side of the arena,
for all three tests. Rank sum p-value equal to or smaller than 0.1, 0.05, 0.01, 0.001 was marked with #, *, **, ***, respectively

Table 1.

The effect of the test (SP, SxP, and ESPs) on the urine and fecal deposition rates. Kruskal-
Wallis test was used to check if the test type affects the rate of urine or fecal depositions.
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Males Make More Fecal Depositions
at the Social Side During the SP Test
Finally, we found that males make more fecal depositions at the arena side of the social stimulus
during the trial period of the SP test (p=0.029 for # of detections and p=0.017 for detections area), a
tendency that became trendy in the SxP test and disappeared in the ESPs test (Figure 6a,c     ). For
females, we found only a few trends but no significant difference (Figure 6b,d     ). Interestingly,
while males spent more time on the social side during the SP trial (Figure 1     ), they did not
deposit more urine on that side of the arena.

Discussion and Limitations
Here, we present a new algorithm and an open-code trainable computational tool for detecting
and classifying urine and fecal deposition events from IR video clips. This algorithm allows
detailed characterization of small rodents’ urine and fecal deposition dynamics during social
behavior experiments. The advantage of this tool is that it is automated, thus creating rapid and
unbiased analysis of urination and fecal deposition events and areas with a high temporal and
spatial resolution. Specifically, combining our algorithm with an IR camera for thermal imaging of
behavioral experiments, as we conducted here, can replace the void spot test, which usually lacks
any temporal resolution and is prone to mistakes caused by urine smearing and filter-paper
tearing. Finally, our algorithm allows analysis of fecal deposition behavior, which was rather
unexplored so far, but may contribute to scent marking behavior, as discussed below. Our
algorithm uses thermal video clips generated by an IR camera placed above the arena and does
not require a thermal camera placed below a clear arena floor, as used by several recent papers
(see Keller et al. (2018)      for example). Thus, it can be employed with standard experimental
setups, such as those used for the three-chamber test. We believe the computational tool and
experimental method presented here can be useful for a detailed characterization of social
behavior in mice, including the context of mice models of autism spectrum disorder and other
social behavior-related health conditions. It may also help investigate urination and fecal
deposition activities in other scientific contexts unrelated to social behavior. Our experimental
setup is cheap and easy to assemble, and the detection algorithm can run on a standard PC with a
GPU card.

Analysis of the mistakes made by the algorithm in the test set (see Figure 2     —video 1) raised
several limitations, which might be addressed in future work. Urine or fecal depositions must be
fully visible and not partially occluded by the mouse when the deposit is still warm. Partial
occlusion or a close adjacency between the mouse and the urine or fecal blob might cause the
mouse mask to overlap the mask of the urine or fecal deposit, thus preventing their detection. All
of the “miss” events in the test videos (two urine and three fecal depositions) were close to the
mouse for a long period after their depositing. A wrong classification of urine as fecal deposition
occurred four times in the test set. In all these events, the urination spot was small (and therefore
harder to distinguish from feces). In two of these events, there was a second urine or fecal
deposition in a nearby location after the first urine deposition. We hypothesize that such an event
may cause the classifier “to think” that a shift in the location of the deposit (which is common in
the case of feces) has occurred. Classification of background as feces occurred eight times in the
test set. In seven of these events, the mistake was due to feces that were shifted by the mouse to a
new location while they were still warm. Classification of background as urine occurred two times
in the test set. One of these events was caused by a few drops of urine splashed by the stimulus
mouse. In the second case, true urination appeared a few seconds after the preliminary detection
in a nearby location, which was visible in the input image patches fed to the classifier. Future
work might improve accuracy by extending the training set and including more challenging
examples. Another future work may use a trainable detection and segmentation algorithm instead
of heuristic preliminary detection. Note that our classifier currently does not get as input the mask
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of the preliminary detection, making the classification task harder when there are adjacent urine
and feces events. An end-to-end trainable detection, segmentation, and classification pipeline
might address these limitations but might require a larger training set.

We validated our method and algorithm using experimental results from social discrimination
tests conducted by male and female CD1 mice. We showed that in this context, there are distinct
statistically significant dynamics of urine and fecal deposition activities across the habituation and
trial stages, and these dynamics are sex- and test-dependent. Both males and females showed
higher levels of fecal depositing at the early stage of the habituation phase Figure 4a-b     . This
tendency may reflect the higher level of anxiety expected at the beginning of the habituation
phase. Still, it may also serve as a scent-marking activity that labels the arena as a familiar place
for the subject animal. The latter explanation is supported by the fact that the peak in fecal
deposition activity was not reduced from the first-day test (SP) to the third-day test (ESPs) when
the subject is expected to be less anxious due to the familiar spatial context. In contrast to fecal
depositing, urine deposition activity at the beginning of the habitation phase was test-dependent.
While no peak was observed during the SP test, the first time the animals were exposed to the
experimental arena, it was observed in the second test (SxP) and got even stronger in the last test
(ESPs). This development was statistically significant in males but not in females. Since these
changes occur during the habituation phase, before the introduction of the stimuli to the arena,
they cannot reflect the type of test and thus seem to be induced by the order of the experiments.
Notably, similar dynamics across experimental days were previously reported using the void spot
assay for a different strain of mice Keil et al. (2016)     . This suggests that the induction of urination
activity at the early stage of the habituation phase in males represents territorial scent-marking
activity, which is positively correlated to the higher familiarity experienced by the subject in the
arena as the experiments progressed between days. It should be noted the early peak of urination
upon entering an environment was reported by a recent study using a thermal camera for manual
analysis of urination activity Miller et al. (2023b)     . A second peak of urination activity was
observed at the beginning of the trial period, after stimuli insertion to the arena. This was
observed in both males and females, but the test type significantly affected it only in males. In this
case, we cannot dissect the effect of test type from the test order, as the urination activity occurred
after stimuli insertion and, hence, may be induced by the presence of specific social stimuli. Since
the subjects are already habituated to the arena at this stage, the elevated urination activity seems
to serve as part of the subjects’ social behavior, most probably as a territorial scent-marking
behavior. Interestingly, we did not observe a consistent spatial distribution of the urine or fecal
deposits between the arena sides of the preferred and non-preferred stimuli. This seems to
contradict a recent study Miller et al. (2023b)     , that reported opposite bias towards familiar vs.
unfamiliar stimuli in losers vs. winners wild-derived mice following a social contest. This
contradiction may be due to the distinct mouse strains, distinct contexts of social behavior, or
different times with stimuli used by both studies.

Overall, the novel algorithm and software presented by us here enable a cost-effective, rapid, and
unbiased analysis of urine and fecal deposition activities of behaving mice from thermal video
clips. The algorithm is trainable and may be adapted to various behavioral and experimental
contexts. Thus, it may pave the way for integrating this important behavioral aspect in analyzing
rodents’ social and non-social behaviors in health and disease.
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Appendix 1—table 1.

The effect of the test on the urine and feces area. Kruskal-Wallis test was used
to check if the test type (SP, SxP, and ESPs) affects the area of urine or feces.

Listing 1.

Code for computing Two Way Chi-Square Test which was used to compare the
distribution of active mice (with at least one detection) in males vs females.
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Appendix 1—figure 1.

Examples of detections in test videos. (a,b,c) are screenshots taken from Figure 2     —video 1. (a): Examples of urination
events that were detected and classified correctly. Each pair of columns includes a ground truth detection (to the left) next to
the matched automatic detection (to the right), which includes the mask of the detected blob. The overlaid text mentions the
video index and the frame index. (b): Urination events that were wrongly classified as background. Note that all of these
urine spots are very small. (c): Fecal depositions that were detected and classified correctly.

https://doi.org/10.7554/eLife.100739.1
https://doi.org/10.7554/eLife.100739.1


David Peles et al., 2024 eLife. https://doi.org/10.7554/eLife.100739.1 22 of 30David Peles et al., 2024 eLife. https://doi.org/10.7554/eLife.100739.1 22 of 30

Figure 2—figure supplement 1.

Accuracy for small and large detections. (a,b) Confusion matrices on test videos with separation between large and small
automatic detections. The threshold for large detections is an area of 1cm2 which is 47.3 pixels. Shown percents sum to 1 for
each column in (a) and each row in (b). The Large Urination class is correct in 100% of the cases in which it was reported by
the classifier while Small Urination is correct in only 75.8% as shown in (b). Most of the confusion between feces and urine
spots is for small detections: 7.1% of the Ground Truth (GT) urine events were classified as Small Feces while 0% as Large Feces
as shown in (a). Also, 6.7% of the GT feces events were classified as Small Urine while 0% as Large Urine. No GT urine or GT
feces event was classified as Large BG.
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Figure 4-figure supplement 1.

Urine and fecal depositions area during habituation start, habituation end, and trial. The mean area ±SEM of urine and fecal
depositions per minute during habituation start (minutes 1-5), habituation end (minutes 11-14), and trial (first four minutes
of trial). Statistical comparisons between the three periods (three pair-wise comparisons) were done separately for urine and
fecal depositions. Mice with no urine or feces detection in these periods were ignored from the urine or feces analysis,
respectively.
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Figure 5—figure supplement 1.

Comparison of mean deposition areas between sexes. The mean area ±SEM of urine and fecal depositions in males (blue
bars) vs. females (red bars) during early (minutes 1-5) and late (minutes 11-14) minutes of habituation and during the first
minute and minutes 2-4 of the trial. A significant difference between the mean area of urine or fecal depositions (Wilcoxon
rank sum test) is marked with * (or # for 0.05<p-value ≤0.1) and a significant difference in the distribution of non-depositing
animals (Chi-square test) is marked with + (or ! for 0.05<p-value ≤0.1).
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Reviewer #1 (Public Review):

Summary:
The manuscript provides a novel method for the automated detection of scent marks from
urine and feces in rodents. Given the importance of scent communication in these animals
and their role as model organisms, this is a welcome tool.
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Strengths:
The method uses a single video stream (thermal video) to allow for the distinction between
urine and feces. It is automated.

Weaknesses:
The accuracy level shown is lower than may be practically useful for many studies. The
accuracy of urine is 80%. This is understandable given the variability of urine in its
deposition, but makes it challenging to know if the data is accurate. If the same kinds of
mistakes are maintained across many conditions it may be reasonable to use the software
(i.e., if everyone is under/over counted to the same extent). Differences in deposition on the
scale of 20% would be challenging to be confident in with the current method, though
differences of the magnitude may be of biological interest. Understanding how well the data
maintain the same relative ranking of individuals across various timing and spatial
deposition metrics may help provide further evidence for the utility of the method.

https://doi.org/10.7554/eLife.100739.1.sa3

Reviewer #2 (Public Review):

Summary:
The authors built a tool to extract the timing and location of mouse urine and fecal deposits
in their laboratory set up. They indicate that they are happy with the results they achieved in
this effort.

The authors note urine is thought to be an important piece of an animal's behavioral
repertoire and communication toolkit so methods that make studying these dynamics easier
would be impactful.

Strengths:
With the proposed method, the authors are able to detect 79% of the urine that is present and
84% of the feces that is present in a mostly automated way.

Weaknesses:
The method proposed has a large number of design choices across two detection steps that
aren't investigated. I.e. do other design choices make the performance better, worse, or the
same? Are these choices robust across a range of laboratory environments? How much better
are the demonstrated results compared to a simple object detection pipeline (i.e. FasterRCNN
or YOLO on the raw heat images)?

The method is implemented with a mix of MATLAB and Python.

One proposed reason why this method is better than a human annotator is that it "is not
biased." While they may mean it isn't influenced by what the researcher wants to see, the
model they present is still statistically biased since each object class has a different recall
score. This wasn't investigated. In general there was little discussion of the quality of the
model. Precision scores were not reported. Is a recall value of 78.6% good for the types of
studies they and others want to carry out? What are the implications of using the resulting
data in a study? How do these results compare to the data that would be generated by a
"biased human?"

5 out of the 6 figures in the paper relate not to the method but to results from a study whose
data was generated from the method. This makes a paper, which, based on the title, is about
the method, much longer and more complicated than if it focused on the method. Also, even
in the context of the experiments, there is no discussion of the implications of analyzing data
that was generated from a method with precision and recall values of only 70-80%. Surely

https://doi.org/10.7554/eLife.100739.1
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this noise has an effect on how to correctly calculate p-values etc. Instead, the authors seem
to proceed like the generated data is simply correct.

https://doi.org/10.7554/eLife.100739.1.sa2

Reviewer #3 (Public Review):

Summary:
The authors introduce a tool that employs thermal cameras to automatically detect urine and
feces deposits in rodents. The detection process involves a heuristic to identify potential
thermal regions of interest, followed by a transformer network-based classifier to
differentiate between urine, feces, and background noise. The tool's effectiveness is
demonstrated through experiments analyzing social preference, stress response, and
temporal dynamics of deposits, revealing differences between male and female mice.

Strengths:
The method effectively automates the identification of deposits
The application of the tool in various behavioral tests demonstrates its robustness and
versatility.
The results highlight notable differences in behavior between male and female mice

Weaknesses:
The definition of 'start' and 'end' periods for statistical analysis is arbitrary. A robustness
check with varying time windows would strengthen the conclusions.
The paper could better address the generalizability of the tool to different experimental
setups, environments, and potentially other species.
The results are based on tests of individual animals, and there is no discussion of how this
method could be generalized to experiments tracking multiple animals simultaneously in the
same arena (e.g., pair or collective behavior tests, where multiple animals may deposit urine
or feces).

https://doi.org/10.7554/eLife.100739.1.sa1

Author response:

We want to thank the reviewers for their constructive feedback.

General

The recall values of our method range between 78.6% for all urine cases to 83.3% for feces
(and not between 70-80%, as stated by reviewer #2), with a mean precision of 85.6%. This is
rather similar to other machine learning-based methods commonly used for the analysis of
complicated behavioral readouts. For example, in the paper presenting DeepSqueak for
analysis of mouse ultrasonic vocalizations (Coffey et al. DeepSqueak: a deep learning-based
system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacol. 44, 859–
868 (2019). https://doi.org/10.1038/s41386-018-0303-6), the recall values reported for both
DeepSqueak, Mupet and Ultravox (Fig. 2c, f) are very similar to our method.

We have analyzed and reported all the types of errors made by our methods, which are
mostly technical. For example, depositions that overlap the mouse blob for too long till
getting cold will be associated with the mouse and therefore will not be detected (“miss”
events). These technical errors are not supposed to create a bias for a specific biological
condition and, hence, shouldn’t interfere with the use of our method. A video showing all of
the mistakes made by our algorithm on the test set was submitted (Figure 2-video 1).

https://doi.org/10.7554/eLife.100739.1
https://doi.org/10.7554/eLife.100739.1.sa2
https://doi.org/10.7554/eLife.100739.1.sa1
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Below we will to relate to specific points and describe our plan to revise the manuscript
accordingly.

Detection accuracy

a. It should be noted that when large urine spots are considered, our algorithm got 100%
correct classification (Figure 2, supplement 1, panel b). However, small urine deposits are
very similar to feces in their appearance in the thermal picture. In fact, if the feces are not
shifted, discrimination can be quite challenging even for human annotators. To demonstrate
the accuracy of the proposed method relative to human annotators, we plan to compare its
results with the accuracy of a second human annotator.

b. As part of the revision, we plan to test general machine learning-based object detectors
such as faster-RCNN or YOLO (as suggested by Reviewer 2) and compare them with our
method.

c. To check if our method may introduce bias to the results, we plan to check if the errors are
distributed evenly across time, space, and genders.

Design choices

(A) The preliminary detection algorithm has several significant parameters. These are:

a. Minimal temperature rise for detection: 1.1°C rise during 5 sec.

b. Size limits of the detection: 2 - 900 pixels.

c. Minimal cooldown during 40 sec: 1.1°C and at least half the rise.

d. Minimal time between detections in the same location: 30 sec.

We chose to use low thresholds for the preliminary detection to allow detection of very small
urinations and to minimize the number of “miss” events, relying on the classifier to robustly
reject false alarms. Indeed, we achieved a low rate of miss events: 5 miss events for the entire
test set (1 miss event per ~90 minutes of video). We attribute these 5 “miss” events to partial
occlusion of the detection by the mouse.

To adjust the preliminary detection parameters to a new environment, one will need to
calibrate these parameters in their own setup. Mainly, the size of the detection depends on
the resolution of the video, and the cooldown rate might be affected by the material of the
floor, as well as the room temperature.

We plan to explore the robustness of these parameters in our setup and report the influence
on the accuracy of the preliminary algorithm.

(B) We chose to feed the classifier with 71 seconds of videos (11 seconds before the event and
60 seconds after it) as we wanted the classifier to be able to capture the moment of the
deposition, the cooldown process, as well as urine smearing or feces shifting which might
give an additional clue for the classification. In the revised paper we plan to report accuracy
when using a shorter video for classification.

Generability

a. In the revised version, we plan to report the accuracy of the method used on a different
strain of mice (C57), with a different arena color (white arena instead of black).

Statistics

https://doi.org/10.7554/eLife.100739.1
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a. In the revised paper, we will explain why we chose each time window for analysis. Also,
we will report statistics for different time windows, as suggested by Reviewer 3.

b. Unlike reviewer #2, we don’t think that the small difference in recall rate between urine
and feces (78.6% vs. 83.3%, respectively) creates a bias between them. Moreover, we don’t
compare the urine rate to the feces rate.

c. In the revised manuscript we will explicitly report the precision scores, although they also
appear in our manuscript in Fig. 2- Supplement 1b.

https://doi.org/10.7554/eLife.100739.1.sa0
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