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A B S T R A C T

Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, 
approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral 
processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the 
internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in 
social behavior and suggested the existence of partially overlapping functional brain networks underlying 
various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying 
social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) 
need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and 
integrate those different levels. These include studying the expression of immediate-early genes throughout the 
entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. 
Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, 
tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across 
neuronal populations at the single-cell level.

1. Introduction

Social behavior is a fundamental and highly complex behavior 
necessary for the survival of many species, ranging from microorganisms 
to humans (Crespi, 2001). Among other animals, rodents are notably 
social creatures, exhibiting flexible and context-appropriate social 
behavior in their social environments (Rubenstein and Rubenstein, 
2013). Specifically, laboratory rats and mice are the most common an-
imal models used to explore brain mechanisms underlying the various 
types of social behavior (Ellenbroek and Youn, 2016). In this review, we 
aim to emphasize the necessity of employing innovative methods and 
tools to understand how social behavior emerges from the integration of 
neural activity across different scales, occurring simultaneously within 
the brain. We will begin by discussing the complexity of social behavior. 
Subsequently, we will discuss why viewing the brain as a complex sys-
tem and studying the brain in its integrality rather than examining in-
dividual brain areas or subsets of neurons separately could provide new 
and valuable insights into the neurobiology of social behavior. Finally, 
we will outline the methodologies that can be employed in social 
neuroscience to apply this approach effectively.

2. The complexity and multidimensionality of social behavior

Social behavior encompasses every mode of communication and 
interaction between two or more individuals (Chen and Hong, 2018). 
This broad definition includes a wide spectrum of social interactions 
essential for species survival and/or enhancing fitness, including mat-
ing, fighting, and parenting (Silk, 2007). One perspective on this broad 
concept is to examine social behavior through temporal stages, such as 
the detection of social cues, moving toward a conspecific, social inves-
tigation, and finally, the consummatory behavior phase, which may be 
reflected by parenting, mating, aggression, play fighting or huddling (as 
illustrated in Fig. 1). At each stage, animals decide whether to approach 
or avoid certain conspecifics, leading to coherent individual choices. 
The animal can rapidly switch between various stages or types of social 
behavior, e.g., going from allogrooming in one moment to huddling 
during the next one (Rojek-Sito et al., 2023).

Each of these behavioral steps can be broken down into several 
cognitive processes, such as detecting and perceiving social cues, eval-
uating the social and non-social contexts, recognizing the internal/ 
emotional state of others, navigating in the social and spatial 
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environment, and assessing the individual’s own motivation and mood 
states. Integrating all this information allows the individual to make an 
appropriate social decision. Social cues are crucial in identifying mul-
tiple characteristics of social partners, such as age (Cum et al., 2024; 
Rogers-Carter et al., 2019), sex (Markham and Juraska, 2007; Netser 
et al., 2020), strain (Jacobs et al., 2015; Jacobs and Tsien, 2014, 2012), 
and familiarity (Kiyokawa et al., 2014). Rodents were shown to be able 
to distinguish between conspecifics based on their affective state 
(Ferretti et al., 2019; Langford et al., 2006; Mohapatra et al., 2023; 
Netser et al., 2020; Scheggia et al., 2020). In many cases, one variable 
may influence the individual’s decision on how to behave in light of the 
other variables. For instance, during interaction with either naïve or 
stressed conspecifics, adult rats approached stressed juveniles but 
avoided stressed adults (Rogers-Carter et al., 2019). Information 
regarding these variables is transmitted between individuals through 
multiple sensory modalities by pheromonal (Demir et al., 2020), olfac-
tory (Arakawa et al., 2008), visual, auditory (Rao et al., 2014), and 
somatosensory cues (Jabarin et al., 2022).

Rodents also adjust their decisions to the context. Multiple envi-
ronmental factors, such as their familiarity with the conspecific, the 
environmental enrichment in the encounter’s location, and the social 

environment in their home cage may influence their willingness to 
engage in social interactions (Kim et al., 2019; O’Connor et al., 2024; 
Prendergast et al., 2014). Additionally, the brain is a dynamic system 
with changes continuously occurring at many scales (e.g., neuronal ac-
tivity, synaptic pruning, receptor activation/availability, neurotrans-
mitters, etc.), all of which may affect how the brain responds to given 
sensory inputs and generates behavioral outputs. These hidden pro-
cesses, termed "internal states," include arousal, attention, motivation, 
mood, and various homeostatic needs such as sleep, hunger, and thirst 
(Flavell et al., 2022). For example, an internal state of stress shapes how 
sensory information is processed and triggers appropriate behavioral 
and physiological responses to certain stimuli (Anderson, 2016; Bains 
et al., 2015; Senst et al., 2016). Thus, social behavior is significantly 
influenced by the internal state of the subject animal (Kennedy et al., 
2014).

The brain integrates all these different variables throughout each of 
the temporal stages described previously. Moreover, it updates them 
upon recognizing new situations, whether it is the response of the other 
animal, changes in the environmental context, or variations in the in-
dividual’s internal state (Anderson, 2016; Dewsbury, 1982; Falkner 
et al., 2016; Ko, 2017; Li et al., 2017). Social behavior is, therefore, 

Fig. 1. The complexity and multidimensionality of rodents’ social behavior. 
Schematic explanation of the complexity of social interactions between two individual rodents. The distinct temporal stages (detection, approach, avoidance, 
investigation, and consummatory behavior) are shown within the yellow frames at the top of the figure. Various cognitive processes happening in parallel at each 
temporal stage are depicted within green circles at the bottom of the figure. These include the integration of various sensory modalities informing the subject about 
the other conspecific as well as regarding the particular context and environment, together with the subject’s internal state.
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extremely flexible and dynamic. These characteristics make exploring 
and understanding the neurobiological mechanisms underlying social 
behavior highly challenging.

3. From the social brain to social circuits

The "social brain" concept, which emerged in the 90 s thanks to brain 
functional imaging studies in humans, refers to brain areas activated 
during social cognition tasks. Initially, only a few brain areas were 
considered parts of the social brain. For example, one of the earliest 
reviews in this field proposed an initial set of three structures involved in 
social cognition: the amygdala, the orbitofrontal cortex (OFC), and the 
temporal lobes (Brothers, 2002). In the following years, review articles 
have included more structures in the social brain and added putative 
roles for them. For example, the fusiform face area and the superior 
temporal gyrus were linked to social recognition, while the amygdala 
and prefrontal cortex were associated with social valence evaluation 
(Huang et al., 2020; Iaria et al., 2008; Insel and Fernald, 2004; Schultz 
et al., 2003; Zhang and Li, 2018).

As tools and methodologies used for research in social neuroscience 
have advanced, an increasing number of brain regions have been iden-
tified as involved in social processes, such that in recent scientific review 
articles, more than thirty regions and subregions are implicated in social 
behaviors (Chen and Hong, 2018; Fernández et al., 2018; Ko, 2017; 
Wang et al., 2023; Wei et al., 2021). This trend of an increasing number 
of brain structures considered parts of the social brain is still ongoing 
and seems to reflect the realization that the neural basis of social 
behavior and cognition is highly complex and involves a large portion of 
the brain. At the same time, it has become clear that most of these brain 
structures are not exclusively dedicated to social functions and that no 
type of social decision-making or social information processing is 
localized to a single brain region (Stanley and Adolphs, 2013). Distinct 
amygdala nuclei, for example, are active in various emotional contexts, 
including social and non-social ones (Brown and Sharpey-Schafer, 1997, 
1888; McKernan and Shinnick-Gallagher, 1997; Rogan et al., 1997). 
Similarly, the medial prefrontal cortex is involved in the representations 
of social stimuli (Levy et al., 2019), recognition of the internal/emo-
tional state of others (Scheggia et al., 2020), and social decision-making, 
but it also plays a role in many other types of decision-making (Euston 
et al., 2012), as well as other functions (Friedman and Robbins, 2022). 
Notably, many of these brain regions are interconnected and thus may 
act within ad hoc partially overlapping functional networks during 
distinct types of behavior, including non-social cognitive tasks. For 
example, partially overlapping sets of brain regions were shown to be 
active during self-pain processing and empathic pain (Gross et al., 2007; 
Valentini et al., 2013).

Moreover, it is clear that these networks of brain structures may 
subserve distinct types of social behavior. For example, a recent work 
demonstrated that distinct projections in a circuit spanning the central 
amygdala, ventral tegmental area (VTA), anterior cingulate cortex, and 
OFC mediate the initiation and maintenance of social contact between 
male rats (Rojek-Sito et al., 2023). Accordingly, multiple recent review 
articles defined brain-wide neuronal circuits based on their various 
behavioral outcomes, such as mating, aggression, or maternal care 
(Chen and Hong, 2018; Ko, 2017; Wei et al., 2021).

We should also take into account that brain regions are not homo-
geneous. They comprises various cell types, such as glia and astrocytes, 
and different neuron populations with distinct properties, and can be of 
different subtypes (Yao et al., 2023). For example, the medial amygdala 
(MeA) is divided into four subregions: anterodorsal (MeAad), ante-
roventral (MeAav), posterodorsal (MeApd), and posteroventral 
(MeApv), each with distinct circuit connectivity and cytoarchitecture 
(Keshavarzi et al., 2014; Raam and Hong, 2021). MeAad and MeApd 
primarily contain inhibitory neurons, while MeAav and MeApv are rich 
in excitatory neurons (Keshavarzi et al., 2015). Recent single-cell RNA 
sequencing during fear learning and memory consolidation has 

identified 130 distinct neuronal types across the MeA (Hochgerner et al., 
2023). Such division into subregions and distinct neuronal populations 
probably characterizes every brain region previously implicated in so-
cial behavior.

Therefore, it seems more appropriate today to speak of multiple, 
partially overlapping social circuits underlying social behavior and 
cognition rather than a single "social brain." This concept raises new 
questions: how are the relevant input signals selected and distributed 
across the various circuits for further processing? How are the results of 
sensory information processing selectively routed across the densely 
interconnected networks to the appropriate decision-making and exec-
utive centers? How can a single brain region be involved in several 
different, sometimes contradicting, social behaviors? How are the 
numerous computational processes occurring simultaneously in 
spatially segregated circuits and brain areas coordinated and integrated 
to give rise to coherent percepts and actions?

One possible hypothesis implies the idea of specific hub regions that 
integrate all the information, while an alternative hypothesis suggests 
that such integration could occur at a brain-wide scale (Dickinson et al., 
2022). As the brain is a highly connected organ, sensory information 
processing, internal states, and executive functions could occur in 
broadly distributed networks, leaving less space for the idea of a singular 
center where all information converges and which would serve as a 
supraordinate coordinating center. Notably, neither hypothesis is 
mutually exclusive.

4. Complex system approach

In light of the extensive range of brain regions and neuronal types 
implicated in social behavior networks, and the complex challenges of 
studying social behavior, it has become clear that current approaches, 
methods, and tools require reevaluation. To date, most research on so-
cial behavior has focused on individual brain areas, each revealing only 
one piece of a larger puzzle. This perspective raises the critical question: 
can we truly comprehend the dynamic nature of the brain by viewing it 
as a collection of independent elements?

One promising answer lies in leveraging methodologies and tools 
from the field of complexity science (Turkheimer et al., 2022). Origi-
nating from advancements in statistical physics, mathematics, and 
computer science, complexity theory offers a robust framework for 
examining intricate systems. This framework has been successfully 
applied to diverse systems, including metabolic networks, gene-gene 
interactions, as well as, the human brain (Beguerisse-Díaz et al., 2018; 
Razaghi-Moghadam and Nikoloski, 2020; Wein et al., 2021; Yuan and 
Bar-Joseph, 2020).

A complex system is characterized by four agreed-upon properties:

1. It consists of numerous components that interact with their neigh-
bors in a relatively straightforward way. Indeed, we find numerous 
interacting components when examining the brain at the macro-
scopic level of brain regions, the mesoscale level of neuronal pop-
ulations, or the microscopic level of individual neurons and their 
molecular changes. Brain activity involves large, distributed net-
works that dynamically interact and form transient states even dur-
ing simple social tasks (Greene et al., 2023).

2. Complex systems are nonlinear, meaning that changes in input do 
not necessarily lead to proportional changes in output. Social 
behavior, for instance, cannot be fully explained by linear equations 
based solely on neuronal activity (Beguerisse-Díaz et al., 2018; 
Razaghi-Moghadam and Nikoloski, 2020; Wein et al., 2021; Yuan 
and Bar-Joseph, 2020).

3. These systems exhibit self-organization, such as the spontaneously 
developing coordinated oscillations and baseline activity character-
izing internal brain states even in the absence of external stimuli 
(Vidaurre et al., 2018; Wainio-Theberge et al., 2021).
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4. Complex systems show emergent behavior, which means macro-
scopic outcomes cannot be fully understood through microscopic 
interactions alone. Our current understanding of neurobiology does 
not comprehensively explain social behavior. However, there is an 
important distinction between weak and strong emergence. Strong 
emergence, exemplified by consciousness, suggests that new princi-
ples are needed beyond lower-level interactions (Chalmers, 2006). 
Conversely, weak emergence relies on computational models and 
complexity science to build higher-order behaviors from basic ele-
ments, highlighting the complexity of such systems while acknowl-
edging the limits of current methods. The concept of strong 
emergence suggests there may be limits to what such approaches can 
achieve (Turkheimer et al., 2022). In contrast, the weak emergence 
framework supports using computational models and simulations to 
study the neurobiological basis of social behavior.

Viewing neural systems through the lens of complexity science aligns 
with contemporary neuroscience evidence and matches complex sys-
tems’ properties. Complexity-driven methodologies provide powerful 
tools for understanding the dynamic interactions between different 
brain regions and how these interactions produce emergent behaviors. 
Connectivity lies at the heart of the complex systems approach. It is 
essential not only to map the structural connections within the brain but 
also to consider their dynamic aspects in order to fully comprehend the 
complexity of brain function. The connectome provides a detailed 
blueprint illustrating how different brain regions are anatomically 
interconnected, revealing the neural pathways that underpin various 
cognitive functions, behaviors, and physiological processes. Complexity- 
driven methodologies may enable us to construct a graph network of the 
functional connectome, which is a comprehensive map or diagram de-
tailing the dynamic functional connectivity within the brain over time.

5. The challenge of studying brain-wide networks

In humans, electroencephalogram (EEG) and Functional Magnetic 
Resonance Imaging (fMRI) can be used to create a graph network of the 
brain during specific tasks. EEG studies have described the emergence of 
synchronized electrical oscillations between cortical regions at the 
millisecond timescale during social perception (Fraiman et al., 2014; 
Rodriguez et al., 1999). Yet, EEG can only capture electrical activity 
from cortical areas in low spatial resolution. fMRI studies have revealed 
synchronized neural activity across the brain at the timescale of seconds 
(Sokolov et al., 2018). Nevertheless, fMRI lacks the spatial and temporal 
resolution needed to understand the dynamic activity of neuronal net-
works, using a spatial resolution of millimeters and a typical time res-
olution of 1–3 seconds per image acquisition. Furthermore, fMRI cannot 
simultaneously provide a comprehensive view of the entire brain, as it 
typically focuses on specific regions at a given time. Lastly, fMRI is 
unsuitable for freely moving subjects, which limits its application in 
studying social behavior. Thus, while these methods are available for 
mapping brain activity in humans, they are constrained by ethical, time, 
and space limitations. These limitations may be solved by using animal 
models for the exploration of brain-wide neural activity during social 
behavior.

It is commonly accepted to use rodents as models for studying social 
behavior. Many species of rodents are highly social, and some of them, 
like rats and mice, are commonly used as laboratory animals, hence offer 
powerful experimental tools for elucidating the molecular, cellular, and 
neurobiological mechanisms that regulate social behavior (Hecht et al., 
2012; Mogil, 2019; Wöhr and Krach, 2017). However, no method is 
available yet to access a complete real-time graph of all the nodes and 
connections of the rodent brain during social behavior. Most methods 
developed to study brain dynamics typically require selecting specific 
brain areas in advance, resulting in partial data being collected. For 
example, several techniques enable in vivo electrophysiological 
recording from 1 to 2 dozen brain regions simultaneously. Thus, a 

crucial step is the unbiased, informed selection of regions for such re-
cordings, which facilitates the study of the neurobiology of social 
behavior at a macro scale (examining interactions between remote brain 
areas). Once the structure of the neuronal networks involved in a given 
social behavior is deciphered, we can further explore its details and 
dynamics using electrophysiological techniques. The various existing 
techniques allow us to investigate the neurobiology of social behavior at 
multiple levels: at the macro scale (interactions between brain regions), 
the mesoscale (neuronal populations within a given region), and the 
microscopic scale (individual neurons and their subcellular 
compartments).

Below, we will discuss several complementary methods (illustrated 
in Fig. 2) currently available to gain insights into system-level brain- 
wide neuronal activity during social behavior in rodents.

6. Macro-scale level: brain-wide approach

6.1. Studying the whole brain expression of immediate-early genes, such 
as c-Fos

One method allowing unbiased identification of brain areas impli-
cated in a certain type of social behavior is to map the brain-wide 
expression pattern of immediate-early genes such as c-Fos or Arc. The 
expression of immediate-early genes, especially c-Fos, in neurons, is 
known to be activated by recent electrical activity; hence, it may be a 
report of the neurons that were active during a given time window 
throughout the brain (Clayton, 2000; Guzowski et al., 2005). This 
approach, usually using either immunostaining or genetic modifications 
coupling the expression of a fluorescent protein to the promoter of an 
immediate-early gene, offers a spatially comprehensive view of recent 
activity across the entire brain. Unlike in vivo electrophysiology or cal-
cium imaging, c-Fos analysis has limited time resolution, as the animal 
needs to be sacrificed during a certain time window after the task, in 
order to access the c-Fos expression. However, it does provide a com-
plete picture of recent whole-brain activity at the single-cell level. This 
allows researchers to identify key brain structures relevant to specific 
social behaviors and quantitatively analyze variations in their response 
to distinct stimuli. For example, analysis of brain-wide neural activity 
via quantification of the immediate early gene c-Fos identified a pro-
social neural network, including the frontal and insular cortices, that 
were active during the helping test (Ben-Ami Bartal et al., 2021). The 
striatum was selectively active while helping ingroup members but not 
during interactions with outgroup members. Activity in the nucleus 
accumbens (NAc) correlated with helping behavior (Ben-Ami Bartal 
et al., 2021). In a more recent study, individuals who exhibited helping 
behavior compared to those who did not, there was increased activity in 
regions associated with empathy in humans, such as the somatosensory 
cortex, insula, cingulate cortex, and frontal cortex, as well as in regions 
associated with motivation and reward, such as the NAc (Hazani et al., 
2024). Additionally, adolescent rats exhibited reduced hippocampal and 
insular activity and increased OFC activity compared to adults in help-
ing behavior tests (Breton et al., 2022). Such whole-brain activity maps 
based on immediate-early genes can generate structure-function hy-
potheses for further investigation through in vivo electrophysiological 
recordings and calcium imaging at higher temporal resolution. More-
over, correlating c-Fos expression between the various brain regions 
allows one to draw a graph of the functional network of brain regions 
that act in positive or negative correlation during a given behavior. 
However, mapping c-Fos expression does not provide insights into the 
dynamics of brain activity or the actual connections between these brain 
areas beyond these correlations.

6.2. Monitoring activity of multiple brain regions

6.2.1. Multiple fiber photometry
Methods such as in vivo fiber photometry and electrophysiology have 
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the capability to record neuronal activity in any brain area. Still, 
traditionally, their main limitation has been the number of brain areas 
that could be recorded simultaneously. However, new tools have been 
developed to address this limitation.

In 2015, a method known as frame-projected independent fiber 
photometry was introduced to record fiber photometry signals from 
several brain areas simultaneously (Guo et al., 2015). Using this method, 
researchers identified synchronous activity across multiple cortical and 
limbic regions on a timescale of 100 ms during exposure to social nov-
elty (Kim et al., 2019). In 2019, another laboratory published a paper 
demonstrating the recording of networks comprising 12–48 brain areas 
and optically perturbing subsets of regions using optogenetic manipu-
lation (Sych et al., 2019). Perturbation of ventral thalamic nuclei 
resulted in distributed network modulation and behavioral deficits; in a 
texture discrimination behavior, the number of missed and False alarms 
increased (Sych et al., 2019). The big advantage of multi-site fiber 
photometry recordings over electrophysiology is the ability to record 
from specific neuronal populations using genetically encoded calcium or 
voltage indicators. For example, a recent elegant study recorded activity 
from Esr1-positive neurons in 12 limbic brain areas using fiber 
photometry during social behavior in male mice (Guo et al., 2023). The 
findings of this study revealed that social activity-coupled signals were 
widely distributed in this limbic network of brain areas and could be 
decoded from the network activity. Specifically, MeA showed increased 
activity during each episode of social investigation, while the ventro-
medial hypothalamus (VmH) demonstrated the fastest and largest 
response during attacks. Functional connectivity among nearly all 

recorded brain areas drastically increased during attacks, with 12 out of 
13 brain areas showing increased activity. Cross-region correlation 
analysis revealed significant increases in network functional connec-
tivity during the initiation phase of social action, whereas late copula-
tion was associated with a dissociated network state. Based on these 
response patterns, the researchers proposed a mating-biased network 
and an aggression-biased network to mediate male sexual and aggres-
sive behaviors, respectively.

Multiple studies using fMRI, EEG, or multi-site fiber-photometry 
indicate a synchronization among different brain regions during various 
social behaviors (Guo et al., 2023; Kim et al., 2016; Sokolov et al., 2018), 
thus suggesting that every behavior is a phenotypical manifestation of 
some well-orchestrated brain-wide network activity. This raises new 
questions: how are these brain areas organized at a network scale? Are 
brain-wide dynamics necessary for expressing internal states, or are they 
merely consequences of activity within a highly interconnected network 
of brain regions? However, due to their relatively low temporal reso-
lution, these methods cannot fully answer those questions regarding the 
mechanisms behind the emergence of this synchronized network. Such 
information may be supplied by brain-wide electrophysiological re-
cordings, as will be described below.

6.2.2. Neuronal oscillations and social behavior in rodents
Synchronized neuronal population activity, characterizing many 

behavioral tasks and emotional states, gives rise to network oscillations 
(Buzsáki, 2006). Such oscillations are categorized into different fre-
quency bands, such as theta (4–10 Hz), beta (12–30 Hz), and gamma 

Fig. 2. Complex system approach. 
Summary of a proposed approach for studying the brain-wide networks underlying social behavior: In the first panel, we illustrate methods for identifying brain 
regions involved in social behaviors across the whole brain by assessing the expression of immediate early genes by immunostaining or genetic modification. The 
second panel proposes methods for macro-scale simultaneous recording from multiple selected brain areas and various analyses used to understand the connectivity 
between these areas and their respective weights and roles in the networks. The third panel suggests methods for studying specific brain areas with higher resolution 
to access the mesoscale level. The last panel suggests methods to better understand the relationship between neuronal populations and single-cell recording, thus 
combining mesoscale and micro-scale analyses. Overall, this approach aims to provide a comprehensive understanding of the neural networks that underlie so-
cial behaviors.
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(30–80 Hz), each thought to serve distinct functions across various brain 
regions (Akam and Kullmann, 2014; Buzsáki and Draguhn, 2004). These 
oscillations are reflected by extracellularly recorded local field poten-
tials (LFPs), with the "power" of rhythmic LFP signals reflecting the 
magnitude of these oscillations at a single location. Theta oscillations 
have been extensively studied over several decades and are associated 
with active information processing and stimulus-related activities 
(Buzsáki, 2002; Jones and Wilson, 2005; Jutras et al., 2013). Recent 
studies in rodents have implicated theta oscillations in various cognitive 
and emotional functions, such as spatial navigation, motor activity, 
emotional conditioning, and memory consolidation (Berry and Seager, 
2001; Buzsáki, 2002; Karalis et al., 2016; Likhtik et al., 2014; Popa et al., 
2010). Additionally, synchronized theta oscillatory activity has been 
found not only in response to external stimuli but also during antici-
pation of tasks requiring rapid motor responses, suggesting its role in 
task preparation (Roelfsema et al., 1997). Researchers suggested that 
theta oscillations organize and synchronize spiking activity over 
brain-wide distributed circuits (Benchenane et al., 2010; Courtin et al., 
2014; Mague et al., 2022).

In contrast to theta rhythmicity, gamma rhythmicity is considered a 
bottom-up process associated with the synchronous activity of local 
inhibitory networks (Benchenane et al., 2011; Palva and Palva, 2018). 
Overall, neuronal oscillations are considered a mechanism that syn-
chronizes spiking activity across brain regions and can enhance infor-
mation transfer between them (Buzsáki et al., 2012; Deffains et al., 
2016).

In the context of social behavior, both theta and gamma oscillations 
are modulated by the presence of social stimuli. For example, the dor-
somedial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) 
exhibit increased theta oscillation power and decreased gamma power 
when mice interact with a stimulus mouse. In mouse models with 
reduced social interactions, the dmPFC showed a higher increase in 
theta power when they exhibited social avoidance behavior. In contrast, 
in wild-type mice, the dmPFC and BLA decrease theta power during 
social approach to a target mouse. Frequency-specific optogenetic ma-
nipulations that replicate social approach-related LFP patterns have 
been shown to restore social interaction behavior in socially deficient 
mice (Kuga et al., 2022).

Since theta oscillations are well-known to be involved in modulating 
social behavior, they seem to be a key candidate for propagating in-
formation that encompasses both the internal state and social context 
(Karalis and Sirota, 2022). Moreover, LFP theta rhythmicity induced in 
the rat brain during a free social interaction test has persisted for a while 
after removing the social stimulus from the arena. These findings led to 
the hypothesis that self-generated oscillatory activity in the 
theta-frequency range may serve as a correlate of internal states 
(Tendler and Wagner, 2015). Interestingly, many fundamental behav-
iors, such as breathing and locomotion, are regulated by neural activity 
within the theta frequency range (Bender et al., 2015; Tort et al., 2018). 
These behavior outputs are key observable variables from which the 
internal state of the mice can be inferred (Marques et al., 2020). 
Accordingly, theta rhythmicity is thought to reflect top-down processes 
associated with internal states such as arousal and attention, which are 
regulated by brain-wide active neuromodulators across brain networks 
(Clayton et al., 2015; Fiebelkorn and Kastner, 2019; Knyazev, 2007).

6.2.3. Coordination of brain-wide neural activity by neuromodulators
The impact of neuromodulators on behavior has been extensively 

studied (Bargmann, 2012; Bargmann and Marder, 2013; Flavell et al., 
2013; Harris-Warrick and Marder, 1991; Kennedy et al., 2014; Marder, 
2012; Nusbaum and Blitz, 2012; Taghert and Nitabach, 2012; Zeli-
kowsky et al., 2018). Neuromodulators occupy an ideal position to 
explain complex behavior as they can modulate neural circuits through 
rapid actions, such as increased excitability and long-lasting effects (Van 
den Pol, 2012). Neuromodulatory centers, such as the medial raphe 
nuclei (serotonin) or locus coeruleus (noradrenaline), can also have 

brain-wide effects over long distances and receive diverse synaptic in-
puts while sending diffuse projections to many brain regions (Ren et al., 
2018; Saper et al., 2010; Weissbourd et al., 2014). One neuromodulator 
extensively implicated in the context of social behavior is the hypotha-
lamic neuropeptide oxytocin. It is released during mating (Waldherr and 
Neumann, 2007). Blocking oxytocin receptors in the NAc prevents the 
formation of partner preference induced by mating, whereas adminis-
tering oxytocin in the NAc is sufficient to induce partner preference in 
female prairie voles (Liu and Wang, 2003). The release of oxytocin in the 
NAc core during social interaction is indispensable for social 
interaction-induced conditioned preference (Dölen et al., 2013). More-
over, the collective knowledge of neuromodulators, particularly exem-
plified by the role of oxytocin in social behavior, supports the idea that 
neuromodulators often act in combination rather than through a single 
modulator for a single action. Indeed, the facilitating effects of oxytocin 
and dopamine on partner preference are interdependent; an antagonist 
of the D2 dopamine receptor in the NAc can abolish partner preference 
induced by oxytocin and vice versa (Liu and Wang, 2003). Globally, 
neurons that populate a given circuit are usually heterogeneous and can 
differentially express several receptors of neuromodulators. Thus, 
neuronal circuits may be modulated by emergent states produced by the 
effects of multiple interacting neuromodulators (Bargmann, 2012; 
Courtiol et al., 2021; Daw et al., 2002; Doya, 2002; Marder, 2012). 
Notably, theta rhythmicity in various brain regions, such as the hippo-
campus and prefrontal cortex, was shown to be regulated by distinct 
neuromodulators (Benchenane et al., 2010; Gu and Yakel, 2022; Vertes 
and Kocsis, 1997). One way by which neuromodulators may regulate the 
behavioral effects of brain-wide oscillatory neuronal activity is by 
modulating the coherence of such activity between various brain 
regions.

6.2.4. Communication between brain areas through neural coherence
Brecht et al. (1998) conducted one of the first studies to provide 

evidence of synchronized LFP rhythmicity among widely distributed 
brain structures, including the primary visual cortex, the optic tectum, 
and the suprasylvian cortex, by simultaneously recording from those 
areas in anesthetized paralyzed cats (Brecht et al., 1998). Since then, 
LFP coherence analysis has become broadly used to determine if two 
brain regions exhibit synchronized neuronal oscillatory activity 
(Bowyer, 2016). This led to the development of the coherence metric 
and the emergence of the concept of communication through neural 
coherence, which suggests that neural communication between remote 
brain regions and distributed circuits is supported by neuronal syn-
chronization (Fries, 2005). Coordinated oscillations have been shown to 
play a role in information transfer between neurons (Akam and Kull-
mann, 2014; Buschman and Kastner, 2015; Voytek and Knight, 2015), 
dynamic changes in synchronization can flexibly alter the pattern of 
communication within a neuronal network (Fries, 2015). This concept 
of dynamic functional connectivity is supported by the fact that research 
has indicated that pathologies associated with social deficits are linked 
to altered functional connectivity. For example, such a phenomenon has 
been demonstrated in humans with autism spectrum disorder (ASD), 
which exhibit a pronounced reduction in gamma band power in the left 
hemisphere (Castelli et al., 2002; Koshino et al., 2005; Villalobos et al., 
2005), as well as a reduction in the power and coherence of slow brain 
rhythms, such as alpha (8–12 Hz) and theta rhythms (Barttfeld et al., 
2013; Coben et al., 2008; Doesburg et al., 2013; Isler et al., 2010; 
Kikuchi et al., 2015; Machado et al., 2015; Murias et al., 2007).

One possible explanation for the emergence of coherence in neural 
systems is spike-field coherence (SFC) (Zarei et al., 2018). SFC is a 
neurophysiological measure that quantifies the temporal relationship 
between the firing of neurons and the oscillatory activity within a spe-
cific frequency band (Fries et al., 2002, 2001; Grasse and Moxon, 2010; 
Hagan et al., 2012). This measure provides insights into how individual 
neurons integrate and interact with larger network dynamics and, 
hence, could be crucial for bridging the gap between macroscopic and 
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microscopic scales of neural activity. It helps connect large-scale brain 
oscillations observed at the macro level with individual neurons’ 
detailed, micro-level activity, providing a more comprehensive under-
standing of neural dynamics. However, SFC analysis requires 
high-quality signals to detect neuronal spikes reliably. This can be 
challenging with multi-electrode arrays, particularly where individual 
neuron signals are not discernible. In such cases, the precision of spike 
detection may be compromised, making it difficult to assess spike-field 
relationships accurately. Thus, as discussed later, it may be more rele-
vant to mesoscale recordings using Neuropixels probes.

6.2.5. Exploring brain-wide neural activity in animal models during social 
interactions using electrode arrays

Multi-site brain recordings from behaving animals have revealed 
that during social encounters, most, if not all, brain regions exhibit 
higher levels of theta and gamma power compared to baseline (Kuga 
et al., 2022; Tendler and Wagner, 2015). Specifically, social encounters 
are associated with enhancing brain rhythmic activity, particularly in 
the theta range, across all brain regions. This enhancement reflects an 
internal brain state associated with social arousal (Tendler and Wagner, 
2015). Additionally, changes in theta rhythmicity are directly propor-
tional to the novelty of the social partner and may be considered a 
neuronal correlate of short-term social memory (Liebe et al., 2012). 
Recent studies in mice have also shown that theta and gamma rhyth-
micity are driven by an encounter-induced global brain state that shows 
similar temporal dynamics across tasks independent of the behavioral 
dynamics. However, the change in theta coherence during the encounter 
period differed significantly between tasks, thus reflecting the social 
context more than other variables (Mohapatra et al., 2024). Moreover, 
Cntnap2-KO mice, a mouse model of autism spectrum disorder (ASD), 
exhibited higher LFP theta and gamma rhythmicity than C57BL/6 J 
mice, even at rest. Specifically, Cntnap2-KO mice showed a greater in-
crease in theta coherence during the social discrimination test compared 
to baseline, particularly between the prelimbic medial prefrontal cortex 
(PrL) and the hypothalamic paraventricular nucleus (PVN) (Mohapatra 
et al., 2023). This increased coherence indicates that these two brain 
areas are more synchronized during the social discrimination test in 
Cntnap2-KO mice than C57BL/6 J wild-type mice (Mohapatra et al., 
2023). Another recent study showed that the PrL and Nac increased their 
connectivity in the high theta band while individuals were cooperating 
during a cooperative test (Conde-Moro et al., 2024).

Overall, these results are in accordance with the concept of a com-
plex system, which implies that the outputs result from how the ele-
ments of the system interact rather than from how much they vary 
individually. This suggests that the collective behavior and emergent 
properties of the system are more significant than the individual varia-
tions of its components.

Several mathematical tools are used in the field of social neurosci-
ence to address this issue. Some tools have been developed and adapted 
to study the brain at the network level rather than just a sum of pairwise 
interactions between brain areas. Linear Factor Models, including 
principal component analysis (PCA) and independent component anal-
ysis, are a widely used method in neuroscience to analyze brain network 
data (Cunningham and Yu, 2014; Udell et al., 2016). These methods 
simplify the interpretation of data from various modalities by analyzing 
extracted features such as power spectra from LFP or cross-spectral 
covariance matrices from multi-site LFP recordings. They are particu-
larly useful for studying LFPs and selecting relevant frequency bands 
without bias. For example, in a study on LFPs recorded during social 
interactions in bats, the authors used PCA to identify which frequency 
bands were most involved, as no prior literature was available on this 
topic. They selected the 1–29 Hz and 30–150 Hz ranges across all 
recording channels, bats, and sessions. These ranges robustly captured 
the maximum amount of variance possible, allowing for an effective 
analysis of the data dimensions (Zhang and Yartsev, 2019).

Another tool, called Granger causality analysis, determines whether 

one time series can predict another one (Bressler and Seth, 2011; 
Granger, 1969). Granger causality analysis is used to identify causal 
connectivity between the brain-wide LFP recordings. For instance, such 
analysis of LFP signals recorded from several brain regions in various 
social contexts showed that the ventral dentate gyrus plays a significant 
role in coordinating context-specific rhythmic activity (Mohapatra et al., 
2024). Moreover, Cntnap2-KO mice exhibited increased Granger cau-
sality of theta rhythmicity between the PrL and the PVN across all types 
of contexts (Free Social Interaction, Isolated state preference, Social 
Preference, Sex Preference) (Mohapatra et al., 2023). It is important to 
note that despite advancements, Granger causality is limited by its as-
sumptions of linearity and stationarity, its sensitivity to model specifi-
cation, and its inability to handle nonparametric, multivariate, and 
nonstationary data while accounting for unmeasured variables (Shojaie 
and Fox, 2022). Moreover, we typically cannot incorporate directed 
communication between brain regions using existing measures like 
Granger causality with Linear Factor Models (LFMs) because these 
measures are incompatible with the assumptions of LFMs. To address 
this limitation, a novel measure called the Directed Spectrum has been 
introduced to estimate directed communication in the frequency domain 
(Gallagher et al., 2021). DS measures are compatible with LFMs and can 
accurately recover latent brain networks, demonstrating superior per-
formance compared to other directed communication measures like 
Spectral Granger causality (Gallagher et al., 2017). This advancement 
offers the potential to incorporate the concept of causality between brain 
regions into network models, facilitating a deeper understanding of the 
interactions among different areas of the brain.

6.2.6. Using machine learning for studying brain-wide neural activity 
during social behavior in rodents

It is often useful to describe system dynamics as “states” or attractors, 
which are regional activity patterns between which the system oscillates 
(Kelso, 1995). One research group has developed a machine learning 
approach, termed "cross-spectral factor analysis" (CSFA), to capture 
neural dynamics from raw neural data during changing behavioral and 
state conditions (Gallagher et al., 2017). This approach utilizes LFP 
activity data recorded from multiple brain regions across various fre-
quencies. CSFA breaks down the observed signal into factors defined by 
unique spatio-spectral properties, allowing for mapping LFP signals to a 
lower dimensional space while retaining relevant information. They also 
introduced a semi-supervised approach called discriminative CSFA 
(dCSFA), which facilitates the design of causal follow-up experiments 
(Mague et al., 2022). Empirical results demonstrate that CSFA achieves 
comparable performance in classifying mouse genotype and behavioral 
context compared to existing methods, but it is more easily interpretable 
(Gallagher et al., 2017). Model outputs are termed ‘Electomes,’ which 
are patterns that reflect the electrical functional connectome or net-
works within the brain. These features include spectral power, syn-
chrony, and phase-directionality. The model outputs also allow one to 
assess the activity of each Electome Factor over time. Notably, indi-
vidual brain areas or circuits can participate in multiple Electome Fac-
tors, facilitating functional interactions among them and contributing to 
the emergence of a global brain state.

Extracting Electomes using the dCSFA method from LFP data records 
from 8 brain areas during social behavior revealed that the network is 
organized by theta oscillations originating from the prelimbic cortex and 
amygdala, converging on the VTA (Mague et al., 2022). This network 
encodes both social versus object conditions and individual social 
preferences across populations. Interestingly, the network generalizes 
on a mouse-by-mouse basis to encode individual differences in social 
behavior in healthy animals but fails to do so in a high-confidence ge-
netic model of autism. These findings highlight the brain’s integration of 
distributed activity across timescales to encode an appetitive brain state 
underlying individual differences in social behavior. The authors hy-
pothesize the existence of network-level mechanisms involving the 
synchronization of oscillations that integrate cellular firing across brain 
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regions and timescales (milliseconds to seconds) to collectively encode 
an appetitive brain state underlying individual differences in social 
behavior.

In a more recent article, the same research group defined a brain- 
wide network that encodes an aggressive internal state within and 
across mice by recording twelve brain areas and using the same 
approach (Grossman et al., 2022). Multiple brain regions failed to 
independently encode attack behavior across mice and contexts (11 
brain areas). The aggressive state is encoded at the network level, with 
predictive efficacy exceeding that of ventral hippocampal activity. This 
network is organized by prominent theta and beta oscillations, origi-
nating from the OFC and medial dorsal thalamus and converging on the 
VMH and MeA. The aggressive brain state is encoded by decreased ac-
tivity in the network. Additionally, network activity is conserved when 
animals are isolated in their home cages, so the network encodes their 
trait aggression, not solely their aggression behavior. Furthermore, the 
model was generalized to mice with different genetic backgrounds and 
subjected to a new aggression context.

Thus, probing the macro-scale level with complementary techniques 
such as brain-wide c-Fos expression mapping, multi-site fiber photom-
etry and electrophysiology of multiple brain areas allows for the unbi-
ased identification of critical brain regions involved in social behaviors, 
facilitating a deeper understanding of the complex and dynamic 
neuronal networks underlying these behaviors.

7. Probing the meso- and micro-scale levels

7.1. Neural population and single-cell recordings

Understanding the mesoscale level of brain organization is pivotal, 
especially once macro-scale network dynamics have been revealed and 
hub regions or enhancer regions identified. The network dynamics are 
likely to emerge from integrating macro-scale internal states and the 
processing of environmental and social information that occurs at the 
mesoscale with the behavior of individual neurons. Using tools that 
enable observing neuronal population behavior alongside single-unit 
analysis offers a pathway to unravel the mechanisms underlying phys-
iological social networks’ emergence at both the meso- and micro-scale 
levels. Several methods today allow us to access population and single- 
unit activities. These include silicon probes (Jun et al., 2017), minis-
copes (Zhang et al., 2019), and high-density multi-contact probes 
(Juavinett et al., 2019). Here, we will detail the use of high-density 
multi-contact probes, such as the Neuropixels probe. These probes, 
containing hundreds to thousands of contacts, seem to be the next 
development in this field. Although limited in their capacity to access 
multiple regions simultaneously due to their vertical shaft distribution, 
multi-shaft probes, such as the Neuropixels 2 system, can record from 
four shanks in parallel, thus enabling recordings from a broader range of 
brain regions (Steinmetz et al., 2021). While this remains constrained to 
a subset of the brain, they still offer the advantage of unbiased recording 
from brain areas aligned along the same axis (Jun et al., 2017; Mora 
Lopez et al., 2017). With potentially thousands of neurons recorded 
simultaneously at single-cell resolution, these probes provide a 
comprehensive view of neural activity with high spatial and temporal 
resolution.

In a recent study employing Neuropixels probes, researchers found 
that 42 percent of neurons in the BLA of the subject rat responded to one 
of four stimuli presented (male or female rat, object, or rice) (Mazuski 
and O’Keefe, 2022). Half of these neurons exclusively responded to a 
single stimulus class. The authors thus proposed that BLA neurons 
identify specific etiologically relevant events. Additionally, a recent 
investigation using large-scale electrophysiological recordings across 
multiple brain regions revealed that the state of thirst was encoded as a 
low-dimensional population state (Allen et al., 2019). This encoded state 
influenced both spontaneous and cue-evoked neural activity, notably 
enhancing the rate and duration of task-responsive activity. These 

findings underscore the concept of broadly distributed neural activity 
intricately interwoven with internal states. Moreover, another recent 
study employed silicon probes across diverse cortical and subcortical 
brain regions, uncovering the presence of an intracerebral respiratory 
corollary discharge (Karalis and Sirota, 2022). This discharge effectively 
modulated neural activity across the observed brain areas. Remarkably, 
the rhythmicity of breathing appeared to serve as a global pacemaker for 
the brain, facilitating the integration and segregation of information 
flow and processing across distributed circuits during offline states. By 
synthesizing insights from these studies, we can hypothesize that in-
ternal states may delineate functional sub-networks of neurons within 
and across brain regions and neural circuits, thereby influencing social 
behavior outputs based on the animal’s internal state, which is itself 
influenced by the context.

Thus, despite its constraints, High-density multi-contact probe 
technology opens significant avenues by providing extremely fine 
spatial resolution at the level of individual neurons over a relatively 
large area covering several brain areas.

7.2. Optogenetic and chemogenetic manipulations of neuronal population 
activity

Alongside the above-mentioned electrophysiological methods, 
optogenetics and chemogenetics provide a complementary approach. 
Optogenetics allows for genetically defined, light-based control of neu-
rons and has been widely used in social neuroscience studies. This 
technique has evolved rapidly in recent years, now encompassing a wide 
range of tools that enable the depolarization and hyperpolarization of 
neurons, as well as prolonged activity modulation through on-off light 
delivery systems (Airan et al., 2009; Berndt et al., 2009; Oh et al., 2010; 
Stierl et al., 2011). Additionally, it is now relatively easy to target spe-
cific subpopulations of neurons by combining genetically modified mice 
with viral vector-mediated gene delivery (Packer et al., 2013). For 
example, the ventrolateral subdivision of the VMH (VMHvl) receives 
projections from the bed nucleus of the stria terminalis (BNST), and 
activating Esr1-positive neurons in the VMHvl of male and female mice 
leads to aggression (Hashikawa et al., 2017; Lee et al., 2014). However, 
activating Esr1-negative neurons within the VMHvl is insufficient to 
induce aggression (Lee et al., 2014). Weaker optogenetic excitation of 
these neurons promoted mounting behavior towards both males and 
females. Nevertheless, these results should be interpreted cautiously, as 
VMHvl neurons display complex dynamics within a molecularly defined 
subpopulation (Falkner et al., 2016; Karigo et al., 2021; Remedios et al., 
2017). While optogenetic and chemogenetic techniques allow for tar-
geted manipulation of state-promoting neurons, they may not fully 
replicate the natural dynamics of these cells. Still, they can be effective 
methods for validating the identification of hub regions following 
analysis at a macroscale level. Moreover, combining these genetic 
methods with electrophysiological recordings using miniscopes in the 
VMHvl, for example, could address this issue by exploring how 
state-triggering specific neuronal populations fluctuate across various 
timescales (Aly, 2020; Zimmerman et al., 2017).

Overall, understanding how social brain functional networks 
dynamically emerge and lead to adaptive social decision-making in 
animal models requires macro-scale, meso-scale, and micro-scale re-
cordings of brain activity using tools such as multiple fiber photometry, 
electrode arrays, silicon or Neuropixel probes and miniscopes, as well as 
optogenetic and chemoogenetic manipulations of specific neuronal 
populations.

8. The promise of brain stimulation approach for neurological 
disorders

As mentioned above, ASD is associated with disruptions in brain 
dynamics, but this is also the case for several other neurological and 
psychiatric disorders, such as depression and schizophrenia (Fitzgerald 
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and Watson, 2018; Li et al., 2013; Uhlhaas and Singer, 2013). Trans-
cranial Magnetic Stimulation (rTMS) is a common therapeutic approach 
involving the application of electric currents in order to modulate neural 
activity in specific regions or, more commonly, to the entire brain for 
therapeutic purposes, using both non-invasive and invasive techniques 
(Camacho-Conde et al., 2022). This therapeutic approach is used for 
psychiatric conditions like depression and has shown positive results 
(Figee et al., 2022; Tsai et al., 2023). A meta-analysis of 23 studies using 
rTMS applied on the entire brain to treat core ASD symptoms or 
cognitive deficits showed a significant, albeit moderate, effect on social 
behavior (Barahona-Corrêa et al., 2018). However, only five studies 
reported sustained improvements lasting up to six months. TMS holds 
promise for treating certain aspects of ASD, yet optimal stimulation 
parameters, targets, and duration remain unclear. Research and clinical 
applications hinge on the idea that brain network dynamics play a causal 
role in pathological behavior and could reverse these phenomena. 
Presently, results offer promising treatment options for a wide range of 
neurobiological and psychiatric diseases (Chang et al., 2018; Figee et al., 
2022; Malvea et al., 2022; Tsai et al., 2023). Advancements in under-
standing how neuronal rhythms emerge and contribute to highly flexible 
and complex physiological behaviors, coordinating activities across 
distant brain regions, would greatly aid in selecting appropriate pro-
tocols. By identifying recurring patterns, neuronal populations, func-
tional networks, important signaling pathways, and other crucial 
features, as proposed in this review and illustrated in Fig. 2, we can 
better understand how activity in different brain areas emerges as a 
network to produce complex cognitive functions.

9. Conclusion

In this review, we have delved into the intricate nature of social 
behavior, underscoring the imperative to perceive the social brain as 
comprising multiple partially overlapping neuronal networks and 
investigate brain-wide oscillations. At the heart of our investigation lies 
a key question: how do the many different brain processes happening 
simultaneously in different parts of the brain integrate to create de-
cisions, memories, and actions during social behavior? While social 
neuroscience literature has predominantly focused on the mesoscale 
level, by examining specific brain areas, we posit that a crucial piece of 
the puzzle lies at the macro-scale level. Brain-wide networks appear to 
play a pivotal role in the emergence of complex and adaptive behaviors, 
such as social behavior. Yet, the mechanisms underlying the develop-
ment and emergence of brain-wide networks in a manner conducive to 
complex and nuanced behavior remain enigmatic. How do various 
sensory modalities integrate across multiple brain areas? What influence 
do internal states exert on social behavior outputs? How can a single 
brain region be implicated in several distinct, sometimes contradictory, 
social behaviors? How do dispersed neuronal populations defined at the 
cellular and molecular levels contribute to network dynamics? We 
propose an integrative approach that combines multiple methods and 
tools, operating at diverse spatial and temporal resolutions, to tackle 
these questions, striving to transcend or compensate for technological 
limitations that preclude recording the entire brain during social 
behaviors.
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Beltrán, C., 2015. QEEG spectral and coherence assessment of autistic children in 
three different experimental conditions. J. Autism Dev. Disord. 45, 406–424. 
https://doi.org/10.1007/s10803-013-1909-5.

Mague, S.D., Talbot, A., Blount, C., Walder-Christensen, K.K., Duffney, L.J., Adamson, E., 
Bey, A.L., Ndubuizu, N., Thomas, G.E., Hughes, D.N., Grossman, Y., Hultman, R., 
Sinha, S., Fink, A.M., Gallagher, N.M., Fisher, R.L., Jiang, Y.-H., Carlson, D.E., 
Dzirasa, K., 2022. Brain-wide electrical dynamics encode individual appetitive social 
behavior. Neuron 110, 1728–1741.e7. https://doi.org/10.1016/j. 
neuron.2022.02.016.

Malvea, A., Babaei, F., Boulay, C., Sachs, A., Park, J., 2022. Deep brain stimulation for 
parkinson’s disease: a review and future outlook. Biomed. Eng. Lett. 12, 303–316. 
https://doi.org/10.1007/s13534-022-00226-y.

Marder, E., 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 
1–11. https://doi.org/10.1016/j.neuron.2012.09.010.

Markham, J.A., Juraska, J.M., 2007. Social recognition memory: influence of age, sex, 
and ovarian hormonal status. Physiol. Behav. 92, 881–888. https://doi.org/ 
10.1016/j.physbeh.2007.06.020.

Marques, J.C., Li, M., Schaak, D., Robson, D.N., Li, J.M., 2020. Internal state dynamics 
shape brainwide activity and foraging behaviour. Nature 577, 239–243. https://doi. 
org/10.1038/s41586-019-1858-z.

Mazuski, C., O’Keefe, J., 2022. Representation of ethological events by basolateral 
amygdala neurons. Cell Rep. 39, 110921 https://doi.org/10.1016/j. 
celrep.2022.110921.

McKernan, M.G., Shinnick-Gallagher, P., 1997. Fear conditioning induces a lasting 
potentiation of synaptic currents in vitro. Nature 390, 607–611. https://doi.org/ 
10.1038/37605.

Mogil, J.S., 2019. Mice are people too: increasing evidence for cognitive, emotional and 
social capabilities in laboratory rodents. Can. Psychol. / Psychol. Can. 60, 14–20. 
https://doi.org/10.1037/cap0000166.

A. Phalip et al.                                                                                                                                                                                                                                  

https://doi.org/10.1146/annurev.ne.14.030191.000351
https://doi.org/10.1146/annurev.ne.14.030191.000351
https://doi.org/10.3389/fnsys.2017.00094
https://doi.org/10.3389/fnsys.2017.00094
https://doi.org/10.1101/2024.05.06.592793
https://doi.org/10.1101/2024.05.06.592793
https://doi.org/10.3389/fnhum.2012.00224
https://doi.org/10.1038/s41593-023-01469-3
https://doi.org/10.1016/j.celrep.2020.107899
https://doi.org/10.1016/j.celrep.2020.107899
https://doi.org/10.1016/j.neuroscience.2008.05.046
https://doi.org/10.1146/annurev.neuro.27.070203.144148
https://doi.org/10.1146/annurev.neuro.27.070203.144148
https://doi.org/10.1016/j.clinph.2010.05.004
https://doi.org/10.1016/j.clinph.2010.05.004
https://doi.org/10.1186/s13229-022-00521-6
https://doi.org/10.1371/journal.pone.0036387
https://doi.org/10.1371/journal.pone.0036387
https://doi.org/10.1111/gbb.12123
https://doi.org/10.1101/lm.038521.115
https://doi.org/10.1371/journal.pbio.0030402
https://doi.org/10.1371/journal.pbio.0030402
https://doi.org/10.7554/eLife.47188
https://doi.org/10.7554/eLife.47188
https://doi.org/10.1038/nature24636
https://doi.org/10.1038/nature24636
https://doi.org/10.1073/pnas.1302351110
https://doi.org/10.1038/nn.4251
https://doi.org/10.1038/s41467-022-28090-5
https://doi.org/10.1038/s41467-022-28090-5
https://doi.org/10.1038/s41586-020-2995-0
http://refhub.elsevier.com/S0149-7634(24)00325-7/sbref98
http://refhub.elsevier.com/S0149-7634(24)00325-7/sbref98
http://refhub.elsevier.com/S0149-7634(24)00325-7/sbref98
https://doi.org/10.1101/sqb.2014.79.024984
https://doi.org/10.1523/JNEUROSCI.0627-15.2015
https://doi.org/10.1523/JNEUROSCI.1176-14.2014
https://doi.org/10.1523/JNEUROSCI.1176-14.2014
https://doi.org/10.1093/scan/nsu049
https://doi.org/10.5607/en.2019.28.2.247
https://doi.org/10.5607/en.2019.28.2.247
https://doi.org/10.1038/nmeth.3770
https://doi.org/10.1038/nmeth.3770
https://doi.org/10.1016/j.bbr.2014.03.043
https://doi.org/10.1016/j.bbr.2014.03.043
https://doi.org/10.1016/j.neubiorev.2006.10.004
https://doi.org/10.1016/j.neubiorev.2006.10.004
http://refhub.elsevier.com/S0149-7634(24)00325-7/sbref107
http://refhub.elsevier.com/S0149-7634(24)00325-7/sbref107
https://doi.org/10.1016/j.neuroimage.2004.09.028
https://doi.org/10.1016/j.neuroimage.2004.09.028
https://doi.org/10.7554/eLife.78428
https://doi.org/10.7554/eLife.78428
https://doi.org/10.1126/science.1128322
https://doi.org/10.1126/science.1128322
https://doi.org/10.1038/nature13169
https://doi.org/10.1038/nature13169
https://doi.org/10.1038/s41593-019-0531-z
https://doi.org/10.1371/journal.pone.0070089
https://doi.org/10.1016/j.cell.2017.10.015
https://doi.org/10.1016/j.cell.2017.10.015
https://doi.org/10.1038/nn.3038
https://doi.org/10.1038/nn.3582
https://doi.org/10.1016/s0306-4522(03)00555-4
https://doi.org/10.1007/s10803-013-1909-5
https://doi.org/10.1016/j.neuron.2022.02.016
https://doi.org/10.1016/j.neuron.2022.02.016
https://doi.org/10.1007/s13534-022-00226-y
https://doi.org/10.1016/j.neuron.2012.09.010
https://doi.org/10.1016/j.physbeh.2007.06.020
https://doi.org/10.1016/j.physbeh.2007.06.020
https://doi.org/10.1038/s41586-019-1858-z
https://doi.org/10.1038/s41586-019-1858-z
https://doi.org/10.1016/j.celrep.2022.110921
https://doi.org/10.1016/j.celrep.2022.110921
https://doi.org/10.1038/37605
https://doi.org/10.1038/37605
https://doi.org/10.1037/cap0000166


Neuroscience and Biobehavioral Reviews 165 (2024) 105856

12

Mohapatra, A.N., Peles, D., Netser, S., Wagner, S., 2024. Synchronized LFP rhythmicity 
in the social brain reflects the context of social encounters. Commun. Biol. 7, 1–18. 
https://doi.org/10.1038/s42003-023-05728-8.

Mohapatra, A.N., Jabarin, R., Ray, N., Netser, S., Wagner, S., 2023. Impaired emotion 
recognition in Cntnap2-deficient mice is associated with hyper-synchronous 
prefrontal cortex neuronal activity. doi:10.1101/2023.10.19.563055.

Mora Lopez, C., Putzeys, J., Raducanu, B.C., Ballini, M., Wang, S., Andrei, A., Rochus, V., 
Vandebriel, R., Severi, S., Van Hoof, C., Musa, S., Van Helleputte, N., Yazicioglu, R. 
F., Mitra, S., 2017. A neural probe with up to 966 Electrodes and up to 384 
configurable channels in 0.13 $\mu$m SOI CMOS. IEEE Trans. Biomed. Circuits 
Syst. 11, 510–522. https://doi.org/10.1109/TBCAS.2016.2646901.

Murias, M., Webb, S.J., Greenson, J., Dawson, G., 2007. Resting state cortical 
connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 
62, 270–273. https://doi.org/10.1016/j.biopsych.2006.11.012.

Netser, S., Meyer, A., Magalnik, H., Zylbertal, A., de la Zerda, S.H., Briller, M., Bizer, A., 
Grinevich, V., Wagner, S., 2020. Distinct dynamics of social motivation drive 
differential social behavior in laboratory rat and mouse strains. Nat. Commun. 11, 
5908. https://doi.org/10.1038/s41467-020-19569-0.

Nusbaum, M.P., Blitz, D.M., 2012. Neuropeptide modulation of microcircuits. Curr. Opin. 
Neurobiol., Microcircuits 22, 592–601. https://doi.org/10.1016/j. 
conb.2012.01.003.

O’Connor, A.M., Hagenauer, M.H., Thew Forrester, L.C., Maras, P.M., Arakawa, K., 
Hebda-Bauer, E.K., Khalil, H., Richardson, E.R., Rob, F.I., Sannah, Y., Watson, S.J., 
Akil, H., 2024. Adolescent environmental enrichment induces social resilience and 
alters neural gene expression in a selectively bred rodent model with anxious 
phenotype. Neurobiol. Stress 31, 100651. https://doi.org/10.1016/j. 
ynstr.2024.100651.

Oh, E., Maejima, T., Liu, C., Deneris, E., Herlitze, S., 2010. Substitution of 5-HT1A 
receptor signaling by a light-activated G protein-coupled receptor. J. Biol. Chem. 
285, 30825–30836. https://doi.org/10.1074/jbc.M110.147298.
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Scheggia, D., Managò, F., Maltese, F., Bruni, S., Nigro, M., Dautan, D., Latuske, P., 
Contarini, G., Gomez-Gonzalo, M., Requie, L.M., Ferretti, V., Castellani, G., 
Mauro, D., Bonavia, A., Carmignoto, G., Yizhar, O., Papaleo, F., 2020. Somatostatin 
interneurons in the prefrontal cortex control affective state discrimination in mice. 
Nat. Neurosci. 23, 47–60. https://doi.org/10.1038/s41593-019-0551-8.

Schultz, R.T., Grelotti, D.J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., 
Skudlarski, P., 2003. The role of the fusiform face area in social cognition: 
implications for the pathobiology of autism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 
358, 415–427. https://doi.org/10.1098/rstb.2002.1208.

Senst, L., Baimoukhametova, D., Sterley, T.-L., Bains, J.S., 2016. Sexually dimorphic 
neuronal responses to social isolation. eLife 5, e18726. https://doi.org/10.7554/ 
eLife.18726.

Shojaie, A., Fox, E.B., 2022. Granger causality: a review and recent advances. Annu Rev. 
Stat. Appl. 9, 289–319. https://doi.org/10.1146/annurev-statistics-040120-010930.

Silk, J.B., 2007. Social components of fitness in primate groups. Science 317, 1347–1351. 
https://doi.org/10.1126/science.1140734.

Sokolov, A.A., Zeidman, P., Erb, M., Ryvlin, P., Friston, K.J., Pavlova, M.A., 2018. 
Structural and effective brain connectivity underlying biological motion detection. 
Proc. Natl. Acad. Sci. 115, E12034–E12042. https://doi.org/10.1073/ 
pnas.1812859115.

Stanley, D.A., Adolphs, R., 2013. Toward a neural basis for social behavior. Neuron 80, 
816–826. https://doi.org/10.1016/j.neuron.2013.10.038.

Steinmetz, N.A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M., 
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