#### ACCEPTED MANUSCRIPT



Distinct types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory

Alex Tendler, Shlomo Wagner

DOI: http://dx.doi.org/10.7554/eLife.03614

Cite as: eLife 2015;10.7554/eLife.03614

Received: 6 June 2014 Accepted: 12 February 2015 Published: 16 February 2015

This PDF is the version of the article that was accepted for publication after peer review. Fully formatted HTML, PDF, and XML versions will be made available after technical processing, editing, and proofing.

Stay current on the latest in life science and biomedical research from eLife. Sign up for alerts at elife.elifesciences.org

| Distinct types of theta rhythmicity are induced by social and fearful stimuli in a     | 1  |
|----------------------------------------------------------------------------------------|----|
| network associated with social memory                                                  | 2  |
|                                                                                        | 3  |
| Alex Tendler and Shlomo Wagner,                                                        | 4  |
| Sagol Department of Neurobiology, University of Haifa, Haifa, Israel                   | 5  |
|                                                                                        | 6  |
|                                                                                        | 7  |
|                                                                                        | 8  |
|                                                                                        | 9  |
| Corresponding Author: Shlomo Wagner, Sagol Department of Neurobiology, Faculty         | 10 |
| of Natural Sciences University of Haifa, Mt. Carmel, Haifa, Israel 31905. Tel: (+972)- | 11 |
| 4-8288773, Fax: +(972)-4-8288763, Email: <u>shlomow@research.haifa.ac.il</u>           | 12 |
|                                                                                        | 13 |
|                                                                                        | 14 |
| Competing interest statement: None of the authors has any financial and non-           | 15 |
| financial competing interest in the data presented in this paper.                      | 16 |
|                                                                                        | 17 |

## Abstract

| Rhythmic activity in the theta range is thought to promote neuronal communication         | 19 |
|-------------------------------------------------------------------------------------------|----|
| between brain regions. Here we performed chronic telemetric recordings in socially        | 20 |
| behaving rats to monitor electrophysiological activity in limbic brain regions linked to  | 21 |
| social behavior. Social encounters were associated with increased rhythmicity in the      | 22 |
| high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty.       | 23 |
| This modulation of theta rhythmicity, which was specific for social stimuli, appeared     | 24 |
| to reflect a brain-state of social arousal. In contrast, the same network responded to a  | 25 |
| fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz).           | 26 |
| Moreover, theta rhythmicity showed different pattern of coherence between the             | 27 |
| distinct brain regions in response to social and fearful stimuli. We suggest that the two | 28 |
| types of stimuli induce distinct arousal states that elicit different patterns of theta   | 29 |
| rhythmicity, which cause the same brain areas to communicate in different modes.          | 30 |
|                                                                                           |    |

#### Introduction

| Oscillatory brain activity, mostly categorized to the theta (3-12 Hz), beta (12-30 Hz)  | 34 |
|-----------------------------------------------------------------------------------------|----|
| and gamma (30-80 Hz) bands, is thought to coordinate neural activity in vast neuronal   | 35 |
| assemblies dispersed over different brain regions (1). This type of coordination may    | 36 |
| underlie high level cognitive functions, such as speech and social communication (2,    | 37 |
| 3) that are impaired in autism spectrum disorders (ASD) (4). Increasing evidence        | 38 |
| suggest that individuals with ASD show deficits in long-range neuronal                  | 39 |
| communication associated with low-frequency rhythms, such as the theta rhythm (5-       | 40 |
| 7). Nonetheless, a clear connection between rhythmic brain activity and social          | 41 |
| behavior has not yet been established.                                                  | 42 |
| Mammalian social organization depends on the ability to recognize and remember          | 43 |
| individual conspecifics (8). This social recognition memory (SRM) can be assessed in    | 44 |
| rodents using their innate tendency to investigate novel conspecifics more persistently | 45 |
| than familiar ones (9). In the SRM habituation-dishabituation test, social memory is    | 46 |
| assessed by the gradual reduction in the amount of time the animal spends               | 47 |
| investigating a particular social stimulus during consecutive encounters (10). This     | 48 |
|                                                                                         |    |

than familiar ones (9). 6 assessed by the gradua 17 investigating a particul 8 short-term memory was shown to be mediated mainly by chemical cues 49 (semiochemicals) perceived via the main and accessory olfactory systems (11). Upon 50 binding of semiochemicals to the receptors expressed by the sensory neurons of the 51 main olfactory epithelium and the vomeronasal organ, sensory information is 52 conveyed to the main (MOB) and accessory (AOB) olfactory bulbs, respectively (12). 53 Both bulbs then project, directly and indirectly, to the medial amygdala (MeA) (13, 54 14) that is thought to transfer the information to the hippocampus through the lateral 55 septum (LS) (15). The MOB projects also to several cortical areas comprising the 56

| primary olfactory cortex, of which the piriform cortex (Pir) is best characterized (16) | 57 |
|-----------------------------------------------------------------------------------------|----|
| (Figure 1).                                                                             | 58 |

Here we hypothesized that social behavior is associated with an elevation of rhythmic 59 activity in the network of brain areas that process social stimuli. To examine this 60 hypothesis we recorded electrophysiological activity from the brains of freely-61 behaving adult male rats performing the SRM paradigm (Supplementary Video 1). A 62 telemetric system was used to record from wire electrodes chronically implanted in 63 the five aforementioned brain regions: MOB, AOB, MeA, LS and Pir (12). We found 64 that social encounters were associated with enhancement of brain rhythmic activity, 65 specifically at 7-10 Hz range, in all brain regions. This enhancement that was 66 proportional to the degree of novelty of the social stimulus appeared to reflect an 67 internal brain-state associated with social arousal. In contrast, a fear-conditioned tone, 68 which is associated with fear arousal, induced rhythmicity in the low theta range (3-7 69 Hz) in the same network of brain regions. Moreover, social and fearful stimuli elicited 70 different patterns of change in coherence between the distinct brain regions. We 71 hypothesize that these two types of stimuli induce distinct arousal states in the animal, 72 which are reflected by the different kinds of theta rhythmicity. We further suggest that 73 the distinct types of theta rhythmicity support different modes of communication 74 between the various brain areas. These in turn may modify cognitive processes such 75 as memory acquisition and recall depending on the value and saliency of the stimulus 76 by enhancing synchronous neuronal activity between remote neuronal assemblies. 77

# Results79Brain theta rhythmicity is modulated by the novelty of the social stimulus80

| Electrophysiological recordings were carried out in the brains of freely-behaving adult  | 81  |
|------------------------------------------------------------------------------------------|-----|
| male rats performing the SRM habituation-dishabituation paradigm (Figure 2a). We         | 82  |
| first analyzed the dynamics of the local field potential (LFP) in the course of the      | 83  |
| behavioral paradigm. A highly rhythmic LFP was recorded in all brain areas during        | 84  |
| social encounters (Figure 2b). Power spectral density (PSD) analysis of the LFP          | 85  |
| showed a prominent peak at ~8 Hz, typical for the high theta band (1), in all areas      | 86  |
| (Figure 2c). The value of this peak, termed theta power (TP), was very low in the        | 87  |
| absence of a social stimulus (Base, Figure 2d-e) but increased profoundly during the     | 88  |
| first encounter (Enc. 1). It then gradually decreased during further encounters with the | 89  |
| same stimulus (Enc. 2-4), but increased again when another novel stimulus was            | 90  |
| introduced (Enc. 5). These changes in theta power during SRM testing closely             | 91  |
| followed the changes in investigation time (IT) (Figure 2f), with both parameters        | 92  |
| appearing to correlate with the degree of stimulus novelty.                              | 93  |
| We next analyzed the effect of social and non-social stimuli on the dynamics of          | 94  |
| investigation time and theta power in all recorded brain areas. As exemplified in        | 95  |
| Figure 3a (lower panel), exposure of an animal to either type of stimulus caused         | 96  |
| similar dynamics of the investigation time. However, there was a vast difference with    | 97  |
| regards to the theta power response to the social and non-social stimuli: whereas        | 98  |
| significant theta power modulation that was similar across all brain regions was         | 99  |
| observed with social stimuli, whether awake or anesthetized, object and odor stimuli     | 100 |
| did not cause such an effect (Figure 3a, upper panels).                                  | 101 |
| Combined analyses of the modulation of both theta power and investigation time in        | 102 |
| animals exposed to social and object stimuli are presented in Figure 3b. Social stimuli  | 103 |
| caused a marked increase of mean theta power during Enc. 1 compared to Base, with        | 104 |
| the MOB and AOB showing the largest changes (6.2 dB/Hz) and other areas showing          | 105 |

| more moderate ones (4.0-5.1 dB/Hz). In all regions tested, the theta power decreased                       | 106 |
|------------------------------------------------------------------------------------------------------------|-----|
| gradually during the habituation phase (Enc. 1-4) but returned the values obtained in                      | 107 |
| Enc. 1 after dishabituation (Enc. 5) ( $p$ <0.005 One-way repeated measures ANOVA, *                       | 108 |
| $p_{corr} < 0.05 \text{ post-hoc}$ paired t-test, Figure 3 – source data 1-2). In contrast, object stimuli | 109 |
| elicited a much weaker initial change from Base to Enc. 1 (1.1-2.7 dB/Hz) in all brain                     | 110 |
| regions. Furthermore, the theta power showed modulation during the object paradigm                         | 111 |
| similarly to the social paradigm only in the MOB, and even this change was not                             | 112 |
| statistically significant ( $p$ >0.05, Figure 3 – source data 1). In a sharp contrast to the               | 113 |
| theta power, comparison of the investigation time of social and object paradigms                           | 114 |
| showed a highly similar course and magnitude of habituation and dishabituation that                        | 115 |
| were statistically significant in both cases (Figure 3c, Figure 3 – source data 1-2).                      | 116 |
| Taken together, these results show that in almost all recorded brain areas, theta power                    | 117 |
| is modulated by the degree of novelty of social but not object stimuli.                                    | 118 |
| The modulation of theta rhythmicity during social encounters is driven by an                               | 119 |
| internal brain-state of arousal                                                                            | 120 |
| The lack of theta power modulation despite the clear investigation time modulation                         | 121 |
| induced by object stimuli rejects the possibility that the theta rhythmicity is caused by                  | 122 |
| the investigative behavior. We therefore reasoned that rather, theta power modulation                      | 123 |
| may reflect processes that are either directly driven by the sensory input (Bottom-Up                      | 124 |
| processes) or induced by an internal state of the brain that is modulated by the                           | 125 |
| saliency of the social stimulus (Top-Down processes). In order to distinguish between                      | 126 |
| these two possibilities, we continued our recordings for 5 minutes after the stimulus                      | 127 |
| was removed from the arena (Post 1-5). As depicted in Figure 4a, the theta                                 | 128 |
| rhythmicity did not cease with the removal of the social stimulus following Enc. 1,                        | 129 |
| but remained at a high level during most of the Post 1 period (for spectrograms of the                     | 130 |

| full experiment see Figure 4 – figure supplements 1-5). Plotting the mean                   | 131 |
|---------------------------------------------------------------------------------------------|-----|
| instantaneous theta power as a function of time, revealed that this was true for all        | 132 |
| encounters with a social stimulus. In contrast, encounters with object stimuli were         | 133 |
| followed by a sharp drop in the theta power to a low level almost immediately               | 134 |
| following stimulus removal (Figure 4b, for all other brain areas see Figure 4 – figure      | 135 |
| supplements 6-7). This significant reduction in mean theta power between the Enc.           | 136 |
| and Post periods of the object paradigm was characteristic of all brain areas (Figure       | 137 |
| 4c, * $p < 0.05$ paired t-test, Figure 4 – source data 1). In contrast, high theta power    | 138 |
| levels were found in both these periods in the social paradigm ( $p$ >0.05). Moreover, all  | 139 |
| encounters with social stimuli showed a steep but gradual increase in theta power           | 140 |
| during the first 15 s in which the stimulus was being transferred into the arena (Figure    | 141 |
| 4a, d, gray bars). This rise in theta power probably reflects the subject's anticipation    | 142 |
| for a social meeting, as there was no similar increase with object stimuli (Figure 4d).     | 143 |
| Altogether, these data suggest that the changes in theta power during the SRM test          | 144 |
| reflect a graded internal brain-state of arousal that is proportional to the novelty of the | 145 |
| social stimulus and slowly fades away after its removal.                                    | 146 |
| The theta rhythmicity during social behavior emerges from multiple sources                  | 147 |
| with dynamic coherence between brain areas                                                  | 148 |
| The theta rhythmicity recorded in the network may reflect a single rhythm originating       | 149 |
| from one source. In that case, the various brain regions are expected to display high       | 150 |
| correlation and similar dynamics of coherence in their rhythmicity. Alternatively, if it    | 151 |
| represents a combination of multiple independent rhythms arising from several               | 152 |
| sources, we expect low correlation and differential dynamics of coherence between           | 153 |
| various brain regions. To discriminate between these possibilities, we first examined       | 154 |
| the cross-correlation of the LFP, filtered in the theta range, between the MeA and the      | 155 |

| other brain areas. Despite the fact that both areas are directly connected to the MeA, | 156 |
|----------------------------------------------------------------------------------------|-----|
| the strongest correlation appeared with the LS, and the weakest with the MOB (Figure   | 157 |
| 5a-d). Moreover, whereas the correlation between the MeA and LS was significantly      | 158 |
| higher during Enc. 1 (blue) compared to Base (red), the MOB showed consistently        | 159 |
| low correlation with the MeA during both periods. The presence of a social stimulus    | 160 |
| thus appears to differentially affect the correlation of theta rhythmicity between     | 161 |
| distinct brain areas.                                                                  | 162 |
| We next analyzed the coherence of the LFP signal among all brain areas during the      | 163 |

Base, Enc. 1 and Post 1 periods of the SRM paradigm. As depicted in Figure 6a, the 164 coherence between the MeA and the LS showed several prominent peaks, especially 165 in the theta and gamma bands. Yet, while no change was recorded in the gamma band, 166 the theta coherence showed a significant increase between the Base and Enc. 1. 167 Furthermore, similarly to theta rhythmicity itself (Figure 4), the high coherence at 168 theta range persisted during the Post 1 period despite the lack of a social stimulus 169 (Figure 6a,c). In contrast, the coherence in theta band between the MeA and MOB 170 remained low throughout all periods (Figure 6b,c). Analyses across all regions 171 revealed a hierarchy in the theta coherence between the MeA and all other areas, 172 ranging from a low level with the MOB and AOB, medium coherence with the Pir 173 and high coherence with the LS (Figure 6d). This notion of functional hierarchy 174 between brain regions is strengthened by the fact that despite their largest physical 175 distance, the highest level of theta coherence was found between the MeAs in the two 176 hemispheres (Figure 6 – figure supplements 1 and 3). Furthermore, the theta 177 coherence between the MeA and the higher brain centers (Pir, LS) significantly 178 increased during Enc. 1 and Post 1 (\*  $p_{corr} < 0.05$ , paired t-test, Figure 6 – source data 179 1), while no change was recorded between the MeA and both areas of the olfactory 180

| bulb (MOB, AOB, $p_{corr}$ >0.05). This suggests the existence of at least two independent      | 181 |
|-------------------------------------------------------------------------------------------------|-----|
| theta rhythms, one that governs the olfactory bulb and another that dominates higher            | 182 |
| brain structures. This conclusion is further supported by the findings that the MOB             | 183 |
| shows opposite relationships with all other brain areas; high coherence with the AOB            | 184 |
| and low coherence with the higher areas (Figure 6e, Figure 6 – figure supplements 2             | 185 |
| and 3). Moreover, a significant enhancement in theta coherence with the AOB was                 | 186 |
| observed during Enc. 1 and Post1 (* $p_{corr} < 0.05$ , paired t-test, Figure 6 – source data   | 187 |
| 1), while all other regions showed no change ( $p_{corr}$ >0.05, paired t-test). Interestingly, | 188 |
| similar enhancement of theta coherence between the AOB and MOB was recorded                     | 189 |
| with object stimuli, while these stimuli did not cause any enhancement of the                   | 190 |
| coherence between the MeA and LS or Pir (Figure 6f,g, Figure 6 – source data 1.                 | 191 |
| Together these data support multiple sources of theta rhythmicity in the network.               | 192 |
| Distinct types of theta rhythmicity are induced in the same brain regions by                    | 193 |
| social and fearful stimuli                                                                      | 194 |
| Theta rhythmicity was previously found to be elicited in several brain regions during           | 195 |
| states of arousal, mainly in response to fearful stimuli (17). This phenomenon was              | 196 |
| best studied in the context of fear learning in a network of brain regions comprising           | 197 |
| the basolateral complex of the amygdala (lateral and basolateral amygdala),                     | 198 |
| hippocampus and medial prefrontal cortex (18). In this network, a recall of a fearful           | 199 |
| memory, induced by a fear-conditioned stimulus, elicits robust theta rhythmicity that           | 200 |
| shows high coherence between these brain regions (19-23). Here we examined                      | 201 |
| whether the brain state-induced theta rhythmicity during the SRM paradigm is similar            | 202 |
| to the fear-induced rhythmicity. To address this question we compared the theta                 | 203 |
| rhythmicity induced by a social encounter to that of a fear stimulus within the social          | 204 |
| network that we investigated. To that end, a new cohort of six animals was implanted            | 205 |

| with wire electrodes as before, with an additional electrode in the nucleus accumbens     | 206 |
|-------------------------------------------------------------------------------------------|-----|
| (NAcc), which was recently shown to be involved in social motivation (24, 25). These      | 207 |
| animals were fear-conditioned by coupling a 40 s-long tone to an electrical foot shock    | 208 |
| for five consecutive times separated by 180 s intervals (Figure. 7 – figure supplement    | 209 |
| 1a). A day later the electrical activity was recorded in two consecutive sessions, each   | 210 |
| following a 30 min of habituation to the arena. The first session was recorded during a   | 211 |
| recall of fear memory (FC experiment), and the second during a 5-min long encounter       | 212 |
| with a novel social stimulus (SR experiment). During the FC experiments (Figure. 7 –      | 213 |
| figure supplement 1b), introduction of the fear-conditioned tone caused animals to        | 214 |
| begin moving intensively, followed by immobility (freezing) towards the end of the        | 215 |
| tone, in anticipation of the foot shock. The freezing response was especially             | 216 |
| significant at the end of the first tone (Figure. 7 – figure supplement 1c). Thus, the    | 217 |
| fear-conditioned tone caused a robust arousal state that was associated with intense      | 218 |
| movement of the conditioned animals. We then compared the theta rhythmicity               | 219 |
| between the FC and SR experiments. A PSD analysis of the LFP signals recorded in          | 220 |
| the LS during 5 minutes prior to stimulus introduction (Base) yielded a similar profile   | 221 |
| in both cases (Figure 7a, red). However, the PSD was very different between the two       | 222 |
| types of stimuli during the first 15 s following stimulus introduction (Figure 7a, blue). | 223 |
| Whereas the fear stimulus showed a marked peak at the low theta range (3-7 Hz), the       | 224 |
| social stimulus resulted in a peak at the high theta range (7-10 Hz). This change is      | 225 |
| clearly observed when subtracting the Base PSD from the stimulus profile (Figure          | 226 |
| 7b). These differences appeared in all recorded brain regions (Figure 7c) and             | 227 |
| Statistical analysis showed a highly significant interaction between the type of          | 228 |
| experiment (FC or SR) and theta band (Figure 7d) (** $p$ <0.01, two-way repeated          | 229 |
| measures ANOVA, Figure 7 – source data 1). Thus, we conclude that fearful and             | 230 |

| social stimuli cause changes in very different ranges of theta rhythmicity in the same       | 231 |
|----------------------------------------------------------------------------------------------|-----|
| limbic network of brain regions. We suggest that these different types of theta              | 232 |
| rhythmicity reflect distinct arousal states; the low theta reflects aversive arousal that is | 233 |
| associated with fear while the high theta reflects appetitive arousal associated with a      | 234 |
| social encounter.                                                                            | 235 |
| Distinct changes in coherence are induced in the network by social and fearful               | 236 |
| stimuli                                                                                      | 237 |
| We next examined how the coherence between the various brain regions changes in              | 238 |
| response to the two types of arousing stimuli. Figures 8a depicts the coherence              | 239 |
| between the MeA and LS during Base and stimulus periods of FC and SR                         | 240 |
| experiments, respectively. The change in coherence of the two stimuli is presented in        | 241 |
| Figure 8b and reveals a positive peak at the high theta range for the social encounter,      | 242 |
| and at the low theta range for the fear memory recall. A quantitative analysis of all        | 243 |
| coherence changes within the network in both ranges showed that this tendency                | 244 |
| generally holds for all pairs of brain regions (Figure 8c). Accordingly, most pairs          | 245 |
| showed a statistically significant interaction between the type of experiment (FC or         | 246 |
| SR) and theta band (high or low) (* $p < 0.05$ , ** $p < 0.01$ , two-way repeated measures   | 247 |
| ANOVA, Figure 8 – source data 1). Nevertheless, the magnitude of changes was                 | 248 |
| different between distinct pairs. For example, the changes in the coherence between          | 249 |
| the LS and NAcc were much smaller than those recorded between the Pir and NAcc               | 250 |
| and did not show any statistical significance. Moreover, the increases of coherence          | 251 |
| between the AOB-MOB and MOB-Pir pairs were much bigger in SR compared to the                 | 252 |
| FC experiment. We conclude that the distinct arousal states are characterized by             | 253 |
| distinct patterns of coherence changes within that same network of brain regions             | 254 |
| (Figure 9).                                                                                  | 255 |

| Discussion                                                                                | 257 |
|-------------------------------------------------------------------------------------------|-----|
| This study demonstrates that an encounter with a social stimulus causes increased         | 258 |
| LFP rhythmicity in the high theta range (7-10 Hz), in a network of limbic brain areas     | 259 |
| associated with social memory. Strikingly, the change in theta rhythmicity is directly    | 260 |
| proportional to the novelty of the social partner, and may thus be considered a           | 261 |
| neuronal correlate of short-term social memory (26). Since the modulation of theta        | 262 |
| rhythmicity is observed even when anesthetized stimuli are used, we infer that it does    | 263 |
| not depend on the behavior of the social stimulus. Despite the similarity in              | 264 |
| investigative behavior, such modulation of theta rhythmicity is not observed with         | 265 |
| object stimuli, suggesting that it is social-specific. Since the augmented theta          | 266 |
| rhythmicity and the associated increase in theta coherence persist beyond the removal     | 267 |
| of the social stimulus itself, we conclude that these parameters do not mirror sensory    | 268 |
| inputs but rather reflect a state of arousal that slowly fades away. This is in agreement | 269 |
| with the fact that the increase in theta power occurs prior to the actual introduction of | 270 |
| the social stimulus in the arena, suggesting increased arousal due to the anticipated     | 271 |
| social encounter. Finally, since the change in theta rhythmicity during the SRM test      | 272 |
| correlates with the novelty of the social stimulus, we posit that it reflects a graded    | 273 |
| level of arousal, which is proportional to the stimulus saliency.                         | 274 |
| One of the questions that arise from the study is whether the social encounter-induced    | 275 |
| state of arousal is elicited by the "social" quality of the stimulus or whether it simply | 276 |
| results from the complexity of the stimulus. Notably, the social stimulus is much more    | 277 |
| complex than the single object or odor stimuli that we used as controls. It emits a       | 278 |
| complex mixture of odors and semiochemicals, and in addition to the main and              | 279 |
| accessory olfactory systems it also stimulates the visual, auditory and somatosensory     | 280 |

| systems. It is not likely that the full complexity of the social stimulus may be           | 281 |
|--------------------------------------------------------------------------------------------|-----|
| mimicked by the use of any artificial mixture of odors, hence the possibility that the     | 282 |
| arousal state results from the complexity of the stimulus cannot be excluded. On the       | 283 |
| other hand, at least as regards to fear-associated arousal, it is well documented (27)     | 284 |
| that a very simple cue is sufficient to evoke a state of arousal, such that is observed by | 285 |
| the freezing of rodents in response to the pure odorant 2,3,5-Trimethyl-3-thiazoline       | 286 |
| (TMT), a component of fox odor (28), or to a pure tone in a fear conditioning              | 287 |
| paradigm (29). This suggests that the factor that determines the state of arousal is not   | 288 |
| the complexity of the stimulus but rather the information it embodies with regards to      | 289 |
| the natural environment of the animal.                                                     | 290 |
| Many studies, both in animals and humans, have linked brain theta rhythmicity to the       | 291 |
| processing of emotional cues (30-37). In animals theta rhythmicity was mostly studied      | 292 |
| in the hippocampus (38), where it was classified into two types, Type 1 and Type 2.        | 293 |
| The atropine-insensitive Type 1 theta rhythmicity shows higher frequency (8-12 Hz)         | 294 |
| and is thought to be associated mainly with voluntary movement. In contrast,               | 295 |
| atropine-sensitive Type 2 rhythmicity is characterized by lower frequency (4-8 Hz)         | 296 |
| and is thought to be linked to arousal during states of immobility (39, 40). Notably,      | 297 |
| Type 2 rhythmicity was mostly studied using states of fear and aversive stimuli and        | 298 |
| was shown to be induced by neutral stimuli if conditioned by fear or introduced in the     | 299 |
| presence of predators (35-37). The relationship of the two types of hippocampal theta      | 300 |
| rhythmicity and similar rhythms recorded from other brain regions, such as in our          | 301 |

case, should be cautiously examined for several reasons. First, recent studies showed
302
that in the hippocampus itself there are differences in the profile of theta rhythmicity
303
between the earlier studied dorsal hippocampus and the more recently studied ventral
304
hippocampus (41), the latter of which shows theta rhythmicity with stronger
305

association to the one recoded in the mPFC (42), and may be dissociated from the 306 dorsal hippocampus under certain conditions such as decision making (43). Second, 307 even for the dorsal hippocampus the dichotomy between the two types of theta 308 rhythmicity is far from being perfect with Type 2 rhythmicity reported to reach 12 Hz 309 at some states and Type 1 rhythmicity reported to disappear during certain movements 310 (40). Interestingly, researchers reported that in cats the correlation between movement 311 and Type 1 rhythmicity was good at the beginning of the experiments, when a lot of 312 exploratory and object manipulation behavior was observed, but deteriorated towards 313 the end of the experiments, when the animals were still moving but were uninterested 314 in the task (40). This might suggest that in the hippocampus too, high frequency Type 315 1 theta may be associated with sensory information processing during "positive" 316 arousal states associated with motivational voluntary movements, such as 317 exploration, while low frequency Type 2 theta may be linked to "negative" arousal 318 states, such as those caused by fear, which is usually associated with freezing. 319 Regardless of the nature of hippocampal theta oscillations, theta rhythmicity 320 associated with emotional states was reported in several other brain areas (44-46). Of 321 particular interest is the finding that theta rhythmicity in a limbic network that 322 includes the hippocampus, medial prefrontal cortex and the basolateral complex of the 323 amygdala (lateral and basolateral amygdala) is associated with fear memories. 324 Importantly, the consolidation and recall of long-term fear memory was found to be 325 associated with elevated coherence of the theta rhythmicity in this network (19, 20, 326 22, 23, 47), while its extinction was associated with a decline in coherence, in a brain-327 region dependent manner (48). Moreover, interfering with theta coherence through 328 local electrical micro-stimulation affected fear-memory recall and extinction 329 depending on theta phase (47). Thus, coordinated arousal-induced theta rhythmicity 330

| within this network seems to be involved in consolidation and recall of aversive         | 331 |
|------------------------------------------------------------------------------------------|-----|
| memories (22, 47). Here we demonstrated for the first time that similar phenomena        | 332 |
| occur in a distinct network of limbic areas that are linked to social memory, in the     | 333 |
| course of social encounters. Importantly, a comparison of the theta activity between     | 334 |
| social and fearful stimuli revealed that although both cause a state of arousal, the     | 335 |
| patterns of theta rhythmicity and coherence within the same network are completely       | 336 |
| different. First, in agreement with previous studies (19, 20, 22, 23, 47), the recall of | 337 |
| fear memory causes rhythmicity in the low theta range, while a social encounter          | 338 |
| elicits rhythmic activity in the high theta range. This suggests the existence of two    | 339 |
| types of arousal: fear-associated arousal and social related arousal. Second, each of    | 340 |
| these conditions caused a distinct pattern of coherence changes between the same         | 341 |
| regions of the network. Given these results we hypothesize that the distinct types of    | 342 |
| theta rhythmicity promote different communication protocols (49) for the                 | 343 |
| coordination of neural activity in the network, which depend on the emotional state of   | 344 |
| the animal. Our results are in agreement with the hypothesis that theta rhythmicity      | 345 |
| facilitates cognitive processes such as memory formation that are associated with        | 346 |
| emotionally salient stimuli (50).                                                        | 347 |
| The source and distribution of theta rhythms in the mammalian brain are not fully        | 348 |
| understood (46). This issue was extensively studied in the hippocampus (38), which       | 349 |
| was shown have the capacity to self-generate theta rhythmicity (51). Yet, as described   | 350 |
| above theta rhythmicity also exists in various cortical and limbic areas, where it       | 351 |
| shows dynamic coherence with the hippocampal theta rhythm. One area shown to             | 352 |

display robust theta rhythmicity is the olfactory bulb, where it follows the rhythm of
respiration ("sniff cycle") (52). Sniffing, similarly to whisking, is a sensory sampling
activity, the rate of which dynamically changes throughout the theta band and is
355

strongly influenced by internal arousal and motivational state of the animal (53, 54). 356 Specifically, high-frequency sniffing (8-12 Hz) develops in anticipation of reward 357 delivery (55-58). The olfactory bulb theta rhythm and sniffing are not usually 358 coherent with the hippocampal rhythm. However, in some odor-based learning tasks 359 these rhythms do become transiently coherent (59-61), a process that was suggested to 360 be mediated by cholinergic neurons in the medial septum (62). Interestingly, whisking 361 was shown to get occasionally phase locked with the sniff cycle (63, 64) or with the 362 hippocampal theta rhythm (65) during exploratory behavior. Thus, various generators 363 of theta rhythmicity in the brain, such as those reflected by sniffing, whisking or the 364 hippocampal theta rhythm may become dynamically coupled by the brain 365 neuromodulatory systems. While we did not monitor sniffing in our experiments, 366 several recent studies reported changes in sniffing during both social interactions (66, 367 67) and fear conditioning (68). These studies showed that the sniff cycle adopt high-368 range theta rhythmicity during social interactions, and low-range rhythmicity during 369 fear conditioning. These differences are probably reflected by the distinct rates of 370 theta rhythmicity that we record in the MOB and AOB during these conditions. This 371 may explain our observation of high coherence between MOB-AOB and the low 372 coherence each of them display with all other regions. Moreover, while the coherence 373 between the MOB-AOB is increased during exploration of both social and object 374 stimuli, the coherence between the LS -MeA increases only during social 375 interactions. Thus, the theta rhythmicity displayed by the AOB and MOB probably 376 emerges from a distinct generator, most likely the sniff cycle, that is separate from the 377 one causing rhythmicity in higher brain areas. Furthermore, the significant differences 378 in correlation and coherence dynamics between the various limbic areas suggest the 379 involvement of distinct generators as well. For example, neither paradigm showed 380

| significant coherence changes between the LS-NAcc, as opposed to a significant          | 381 |
|-----------------------------------------------------------------------------------------|-----|
| increase in coherence between the LS -MeA or LS-Pir during social interactions. It      | 382 |
| should be noted that these differences cannot not be accounted for by local diffusion   | 383 |
| of LFP signals, since the LS is much closer to the NAcc than to the MeA or Pir.         | 384 |
| Direct synaptic connections cannot explain these differences either as the MeA shows    | 385 |
| very low coherence with the AOB, despite the strong bidirectional connections           | 386 |
| between them, but rather displays the highest coherence with the contralateral MeA,     | 387 |
| despite the lack of direct synaptic pathway (69). Therefore, the differential coherence | 388 |
| changes between distinct pairs of brain regions during the various conditions are most  | 389 |
| likely mediated by either a common input to these regions or via brain-region specific  | 390 |
| neuromudulatory systems. However, the arousal-driven modulation of theta                | 391 |
| rhythmicity which seems to be common to all brain regions is probably mediated by a     | 392 |
| general, brain-wide neuromodulatory mechanism such as neurohormonal activity (70,       | 393 |
| 71).                                                                                    | 394 |
| An ever growing body of evidence implies rhythmic brain activity in various             | 395 |
| cognitive processes, particularly in memory acquisition and recall (72-74).             | 396 |
| Specifically, slow frequency rhythms such as the theta rhythm, are hypothesized to      | 397 |
| mediate communication between brain regions and to promote the temporal binding         | 398 |
| of neural assemblies in these areas into coherent networks subserving specific          | 399 |
| cognitive processes (1, 74-76). During the last decade, several prominent theories      | 400 |
| implied a disordered or weak communication among brain regions as a major deficit       | 401 |
| underlying ASD etiology and symptoms (3, 5, 7, 77, 78). Indeed, multiple recent         | 402 |
| studies found reduction in the power and coherence of slow brain rhythms, such as the   | 403 |
| alpha and theta rhythms, in ASD individuals (79-85). In agreement with these            | 404 |
| findings, our results suggest that arousal-driven theta rhythmicity may help bind       | 405 |

| correlated neuronal assemblies in distinct brain areas participating in cognitive and | 406 |
|---------------------------------------------------------------------------------------|-----|
| emotional processes underlying social behavior. A disruption of the correlated        | 407 |
| neuronal activity associated with the theta rhythmicity is likely to impair these     | 408 |
| processes (3, 5, 72) resulting in atypical social behaviors.                          | 409 |
|                                                                                       |     |

## Materials and methods:

| Animals                                                                                  | 412 |
|------------------------------------------------------------------------------------------|-----|
| Sprague-Dawley (SD) male rats (5–6 weeks of age, 250–300 gr) served as subjects          | 413 |
| while SD or Wistar Hola/Hannover male rats (5-6 weeks of age, 250-300 gr) served         | 414 |
| as stimuli. All rats were purchased from Harlan Laboratories (Jerusalem, Israel) and     | 415 |
| housed in groups (2-5 per cage) in the SPF rat facility of the University of Haifa under | 416 |
| veterinary supervision, food and water available ad libidum, lights on between 7:00 -    | 417 |
| 19:00. Experiments were performed in a strict accordance with the guidelines of the      | 418 |
| University of Haifa and approved by its Animal Care and Use Committee.                   | 419 |
| Electrodes                                                                               | 420 |
| We used home-made electrodes for implantation. Stimulating electrodes were               | 421 |
| prepared by twisting together two stainless steel wires (A-M Systems, Sequim, WA,        | 422 |
| USA) with bare diameter of 0.005" (Coated-0.008"). Recording electrodes were             | 423 |
| prepared from Tungsten wire (A-M Systems) with bare diameter of 0.008" (Coated-          | 424 |
| 0.011") soldered to stainless steel wire. For reference/ground wire we used stainless    | 425 |
| steel wires attached to a small screw.                                                   | 426 |
| Surgery and electrodes implantation                                                      | 427 |
| The rats were anesthetized with subcutaneously injected Ketamine (10%                    | 428 |
| 0.09cc/100gr) and Medetomidine (0.1% 0.055cc/100gr). Anesthesia level was                | 429 |
| monitored by testing toe pinch reflexes and held constant throughout surgery with        | 430 |
| consecutive injections. The body temperature of the rat was kept constant at             | 431 |
| approximately 37°C, using a closed-loop temperature controller connected to a rectal     | 432 |
| temperature probe and a heating-pad placed under the rat (FHC, Bowdoin, MA,              | 433 |
| USA).                                                                                    | 434 |

| Anesthetized rats were fixed in a stereotaxic apparatus (Stoelting, Wood Dale, IL,         | 435 |
|--------------------------------------------------------------------------------------------|-----|
| USA), with the head flat, the skin was gently removed and holes were drilled in the        | 436 |
| skull for implantation of electrodes and for reference/ground screw connection.            | 437 |
| Stimulating electrodes were placed in the left AOB (A/P= $+3.0$ mm, L/M= $+1.0$ mm,        | 438 |
| D/V = -4.0  mm at 50 degrees) and MOB (A/P= +7.08 mm, L/M= +1.0 mm, D/V= -5.5              | 439 |
| mm). Recording electrodes were placed in antero-ventral area of the MeA (A/P= $-2.4$       | 440 |
| mm, L/M= +3.18 mm, D/V= -8.5 mm), LS (A/P= -0.24 mm, L/M= +0.4 mm, D/V= -                  | 441 |
| 4.4 mm) and Pir (A/P=+3.2mm, L/M=+3.5mm, D/V=-5.5mm), as well as in the                    | 442 |
| NAcc (A/P= +1.2 mm, L/M= +1.4 mm, D/V= -5.8 mm) in later experiments. Each                 | 443 |
| electrode location was verified by its typical field potential signal, evoked in the MeA   | 444 |
| and LS by AOB stimulation (86) and in the Pir by MOB stimulation (87). Following           | 445 |
| verification implanted electrodes (one at a time) were fixed by dental cement              | 446 |
| (Stoelting). When all electrodes were in place, the free ends of the stainless steel wires | 447 |
| (including one wire for each stimulation electrode) were wired up to a connector           | 448 |
| which was then connected to the skull by dental cement, followed by skin is suturing.      | 449 |
| To avoid a need of soldering, procedure that could damage brain tissue due to              | 450 |
| excessive heat, we used gold pins inserted to the connector holes under pressure           | 451 |
| which destroyed the wires isolation to create a contact between the wires and the pins.    | 452 |
| After surgery, Amoxicilin (15%, 0.07cc/100gr) was injected daily (for three days) to       | 453 |
| prevent contamination. Rats allowed recovery for at least 7 days before experiments.       | 454 |
| The experimental setup                                                                     | 455 |
| All experiments were video-recorded from above the arena (see Supplementary video          | 456 |
| 1) by a CCD camera (Prosilica GC1290 GigE, Allied Vision Technology,                       | 457 |
| Taschenweg, Germany). Electrophysiological recordings where made using an 8-               | 458 |
| channel wireless recording system (W8, Multi Channel Systems, Reutlingen,                  | 459 |

| Germany). Recoded signals (sampled at 1 kHz, low-pass filtered at 0-300Hz) were           | 460 |
|-------------------------------------------------------------------------------------------|-----|
| synchronized with the video recordings by start signal sent through a digital to USB      | 461 |
| converter (NI USB-6008, National Instruments, Austin, TX, USA) controlled by a            | 462 |
| self-written Labview program (National Instruments).                                      | 463 |
| The experimental arena comprised a three-layer box (inner dimensions: width - 26          | 464 |
| cm, length - 28 cm, height - 40 cm) with door on its front side. The inner layer was      | 465 |
| made of material (cloth) stretched on cuboid metal carcass to soften mechanical           | 466 |
| bumps of the recording system. The outer layer was made of adhesive black tape to         | 467 |
| prevent light entrance. A stainless steel net serves as a faraday cage in between these   | 468 |
| layers and the Multi-Channel wireless receiver was placed between it and the inner        | 469 |
| layer. During the experiment the arena was illuminated by dim red light. We used a        | 470 |
| double floor made of two plastic slices that can be separately removed.                   | 471 |
| Experiments                                                                               | 472 |
| Overall, we recorded from 22 animals, of them 11 were tested with the social              | 473 |
| paradigm, 6 with the object paradigm (1 animal was tested with both) and 6 animals        | 474 |
| were tested with both fear conditioning and social encounter. Social recognition          | 475 |
| memory using anesthetized stimuli was performed in two animals and smell                  | 476 |
| recognition was tested in three animals. The sample size is not always the same for all   | 477 |
| brain regions since in some of the recorded animals we lost the signals from specific     | 478 |
| electrodes due to various causes.                                                         | 479 |
| At the beginning of each experiment, the tested rat was taken out of its home cage and    | 480 |
| the wireless transmitter was fastened to the connector on its head by a male-to-male      | 481 |
| Interconnect header (Mill-Max Mfg. Oyster Bay, NY, USA) with 18 pins. Following           | 482 |
| 0.5-1 hour of habituation in the experimental arena, the rat was subjected to social,     | 483 |
| object, smell recognition test (Figure 2a), or fear conditioning test (Figure. 7 – figure | 484 |

| supplement 1). Each encounter initiated by pressing "start" button on LabVIEW             | 485 |
|-------------------------------------------------------------------------------------------|-----|
| virtual instrument that sends synchronizing start signal to the camera and the wireless   | 486 |
| system. Then, during a period of 15 seconds, the stimulus was removed from its cage       | 487 |
| and delivered into the experimental arena. At the end of each encounter following         | 488 |
| stimulus removal, the upper floor slice is taken out and thoroughly cleaned with 70%      | 489 |
| ethanol and water to remove any odors left by the stimulus. It was then put back          | 490 |
| below the other slice 5 min after stimulus removal.                                       | 491 |
| Stimuli                                                                                   | 492 |
| Rat stimuli were individually placed in clean covered plastic box and held in the         | 493 |
| experiment room throughout the experiment. The two stimulus animals used for each         | 494 |
| paradigm were always from different rat strains. Anesthetized animal stimuli were         | 495 |
| subcutaneously injected Ketamine (10% 0.09cc/100gr) and Medetomidine (0.1%                | 496 |
| 0.055cc/100gr) 10 min prior to experiment. As object stimuli we used clean metal          | 497 |
| office stapler and hole-puncher. For smell recognition we used small metal-net balls      | 498 |
| filled with cloth soaked with artificial food smells of citrus and vanilla. The metal-net | 499 |
| ball was attached to the cage floor by hot melt adhesive. It should be noted that         | 500 |
| abviously, both object and smell stimuli are much poorer sources of chemosignals that     | 501 |
| social stimuli.                                                                           | 502 |
| Fear Conditioning                                                                         | 503 |
| Fear conditioning took place in a Plexiglas rodent conditioning chamber with a metal      | 504 |
| grid floor dimly illuminated by a single house light and enclosed within a sound          | 505 |
| attenuating chamber (Coulbourn Instruments, Lehigh Valley, PA, USA). Rats were            | 506 |
| habituated to the chamber for 1 hour before fear conditioning. During fear                | 507 |
| conditioning rats were presented with five pairings of a tone (CS; 40 s, 5 kHz, 75 dB)    | 508 |
| that co-terminated with a foot-shock (US; 0.5 s, 1.3 mA). The inter-trial interval was    | 509 |

| 180 s. The fear recall experiments were conducted a day later in the experimental                                 | 510 |
|-------------------------------------------------------------------------------------------------------------------|-----|
| arena described above, using the same procedure without the electrical foot shocks.                               | 511 |
| Histology                                                                                                         | 512 |
| After completion of the experiments, the rats were anesthetized and killed with an                                | 513 |
| overdose of Isoflurane (Abbott Laboratories, Chicago, IL, USA). The brains are                                    | 514 |
| removed and placed in PFA (4% in PBS) over night, followed by sectioning to 200                                   | 515 |
| μm slices using vibrating slicer (Vibroslice, Campden Instruments, Lafayette, IN,                                 | 516 |
| USA). The locations of the implanted electrode tips were identified using binocular                               | 517 |
| and compared to the Pexinos-Watson rat brain atlas (88).                                                          | 518 |
| Data analysis:                                                                                                    | 519 |
| All analyses were done using self-written MATLAB programs (MathWorks, Natick,                                     | 520 |
| MA, USA). In all cases when LFP signals were filtered we used band-pass filter                                    | 521 |
| between 5-11 Hz (high theta band) using MATLAB 'fir1' function.                                                   | 522 |
| PSD estimation: We estimated Power Spectrum Density (PSD) of LFP signal using                                     | 523 |
| multi-tapper approach based on standard Welch's method ('pwelch' function) using 1-s                              | 524 |
| long dpss (discrete prolate spheroidal sequences) window with 50% overlap. The peak                               | 525 |
| of the PSD curve was considered to be the maximum theta power value for each                                      | 526 |
| encounter (Figure 2).                                                                                             | 527 |
| $\Delta$ <i>Theta Power (<math>\Delta</math>TP) calculation</i> : For each brain region, the theta power obtained | 528 |
| during Enc. 0 (Base) was subtracted from the TP values of each encounter.                                         | 529 |
| Spectrogram: For each brain region, spectrograms were computed for each rat per                                   | 530 |
| trial using standard 'spectrogram' function with 1-s long dpss window with 50%                                    | 531 |
| overlap.                                                                                                          | 532 |
| LFP cross-correlation: We used standard 'xcorr' function with 'coeff' option for                                  | 533 |
| cross-correlation between different brain regions of filtered LFP signals for each                                | 534 |

second. The mean peak cross-correlation value across all 300 seconds of each
535
encounter was considered to be the cross-correlation value of the encounter (Fig. 4a).
536 *Coherence*: The coherence between two signals x and y is defined as:
537

$$\operatorname{Coh}_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{xx}(f)S_{yy}(f)}}$$

We computed the cross-spectrum Sxy(f) and the auto-spectra of each signal Sxx(f)538 and Syy(f) using the multitaper method (89), implemented in Chronux 2.0 (90), an 539 open-source, data analysis toolbox available at http://chronux.org. Coherograms were 540 computed using a moving window of 2 s shifted in 200 ms increments, 5 tapers, and 541 time-bandwidth of 3. (params.tapers=[TW=3 K=5]; movingwin=[2 0.2];). As 542 spectrograms, cohergrams, for each brain region, were computed for each rat per trial. 543 For each brain region, mean cohergrams were obtained by averaging cohergrams 544 computed per trial across all rats. 545

#### **Statistics**

546

Statistical analyses were performed using MATLAB, except for repeated measures547ANOVA analyses that were conducted using SPSS (IBM) statistical software. Each548brain region was separately analyzed. Parametric t-test and ANOVA tests were used if549data were found to be normally distributed (Lilliefors and Shapiro-Wilk tests).550Bonferroni's corrections were performed for multiple comparisons using t-test. One-551sided t-tests were used when a change in specific direction was expected before the552experiment.553

### Acknowledgments

554

We thank Dr. Liza Barki-Harrington for a helpful reading of this manuscript. We555thank Dr. Ido Izhaki and Ms. Rotem Gur for generous help with the statistical556analyses. This research was supported by the Legacy Heritage Bio-Medical Program557

| of the Israel Science Foundation (grant #1901/08), by the Israel Science Foundation | 558 |
|-------------------------------------------------------------------------------------|-----|
| (grant #1350/12) and by a Teva fellowship to A.T.                                   | 559 |

| <u>R</u> | <u>eferences</u>                                                                               | 561 |
|----------|------------------------------------------------------------------------------------------------|-----|
| 1.       | Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science.                     | 562 |
|          | 2004;304(5679):1926-9.                                                                         | 563 |
| 2.       | Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, et al. Neural              | 564 |
|          | synchrony in cortical networks: history, concept and current status. Front Integr              | 565 |
|          | Neurosci. 2009;3:17.                                                                           | 566 |
| 3.       | Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive             | 567 |
|          | dysfunctions and pathophysiology. Neuron. 2006;52(1):155-68.                                   | 568 |
| 4.       | Geschwind DH. Advances in autism. Annu Rev Med. 2009;60:367-80.                                | 569 |
| 5.       | Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection                 | 570 |
|          | syndromes. Curr Opin Neurobiol. 2007;17(1):103-11.                                             | 571 |
| 6.       | Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain:          | 572 |
|          | challenges for the "new psychophysiology". International journal of psychophysiology :         | 573 |
|          | official journal of the International Organization of Psychophysiology. 2007;63(2):164-72.     | 574 |
| 7.       | Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain          | 575 |
|          | Cogn. 2011;75(1):18-28.                                                                        | 576 |
| 8.       | Wiley RH. Specificity and multiplicity in the recognition of individuals: implications for the | 577 |
|          | evolution of social behaviour. Biol Rev Camb Philos Soc. 2013;88(1):179-95.                    | 578 |
| 9.       | Gheusi G, Bluthe RM, Goodall G, Dantzer R. Social and individual recognition in rodents:       | 579 |
|          | Methodological aspects and neurobiological bases. Behavioural processes. 1994;33:59-           | 580 |
|          | 88.                                                                                            | 581 |
| 10       | ). Ferguson JN, Young LJ, Insel TR. The neuroendocrine basis of social recognition. Front      | 582 |
|          | Neuroendocrinol. 2002;23(2):200-24.                                                            | 583 |
| 11       | . Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes         | 584 |
|          | to behaviour. Nature reviews Neuroscience. 2003;4(7):551-62.                                   | 585 |

| 12. Dulac C, Wagner S. Genetic analysis of brain circuits underlying pheromone signaling.      | 586 |
|------------------------------------------------------------------------------------------------|-----|
| Annu Rev Genet. 2006;40:449-67.                                                                | 587 |
| 13.Kang N, Baum MJ, Cherry JA. Different profiles of main and accessory olfactory bulb         | 588 |
| mitral/tufted cell projections revealed in mice using an anterograde tracer and a whole-       | 589 |
| mount, flattened cortex preparation. Chemical senses. 2011;36(3):251-60.                       | 590 |
| 14. Pro-Sistiaga P, Mohedano-Moriano A, Ubeda-Banon I, Del Mar Arroyo-Jimenez M,               | 591 |
| Marcos P, Artacho-Perula E, et al. Convergence of olfactory and vomeronasal projections        | 592 |
| in the rat basal telencephalon. J Comp Neurol. 2007;504(4):346-62.                             | 593 |
| 15. Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides.  | 594 |
| 2004;25(9):1565-74.                                                                            | 595 |
| 16. Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron. 2011;72(4):506-19.    | 596 |
| 17.Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain             | 597 |
| oscillations. Neuroscience and biobehavioral reviews. 2007;31(3):377-95.                       | 598 |
| 18.Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition,             | 599 |
| expression, and extinction of conditioned fear. Physiological reviews. 2010;90(2):419-63.      | 600 |
| 19.Pape HC, Narayanan RT, Smid J, Stork O, Seidenbecher T. Theta activity in neurons and       | 601 |
| networks of the amygdala related to long-term fear memory. Hippocampus.                        | 602 |
| 2005;15(7):874-80.                                                                             | 603 |
| 20.Pare D, Collins DR. Neuronal correlates of fear in the lateral amygdala: multiple           | 604 |
| extracellular recordings in conscious cats. The Journal of neuroscience : the official         | 605 |
| journal of the Society for Neuroscience. 2000;20(7):2701-10.                                   | 606 |
| 21. Pare D, Collins DR, Pelletier JG. Amygdala oscillations and the consolidation of emotional | 607 |
| memories. Trends in cognitive sciences. 2002;6(7):306-14.                                      | 608 |
| 22.Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta              | 609 |
| promotes fear memory consolidation during paradoxical sleep. Proceedings of the                | 610 |
| National Academy of Sciences of the United States of America. 2010;107(14):6516-9.             | 611 |

| 23.Seidenbecher T, Laxmi TR, Stork O, Pape HC. Amygdalar and hippocampal theta rhythm        | 612 |
|----------------------------------------------------------------------------------------------|-----|
| synchronization during fear memory retrieval. Science. 2003;301(5634):846-50.                | 613 |
| 24. Dolen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated        | 614 |
| activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501(7466):179-84.         | 615 |
| 25.Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural | 616 |
| neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535-51.            | 617 |
| 26.Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal    | 618 |
| cortex predicts visual short-term memory performance. Nat Neurosci. 2012;15(3):456-62,       | 619 |
| S1-2.                                                                                        | 620 |
| 27. Takahashi LK, Chan MM, Pilar ML. Predator odor fear conditioning: current perspectives   | 621 |
| and new directions. Neuroscience and biobehavioral reviews. 2008;32(7):1218-27.              | 622 |
| 28.Fendt M, Endres T, Apfelbach R. Temporary inactivation of the bed nucleus of the stria    | 623 |
| terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a         | 624 |
| component of fox feces. The Journal of neuroscience : the official journal of the Society    | 625 |
| for Neuroscience. 2003;23(1):23-8.                                                           | 626 |
| 29. Rogan MT, Staubli UV, LeDoux JE. Fear conditioning induces associative long-term         | 627 |
| potentiation in the amygdala. Nature. 1997;390(6660):604-7.                                  | 628 |
| 30.Aftanas LI, Varlamov AA, Pavlov SV, Makhnev VP, Reva NV. Affective picture processing:    | 629 |
| event-related synchronization within individually defined human theta band is modulated      | 630 |
| by valence dimension. Neuroscience letters. 2001;303(2):115-8.                               | 631 |
| 31.Balconi M, Pozzoli U. Arousal effect on emotional face comprehension: frequency band      | 632 |
| changes in different time intervals. Physiology & behavior. 2009;97(3-4):455-62.             | 633 |
| 32.Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV. Event-related delta and theta             | 634 |
| synchronization during explicit and implicit emotion processing. Neuroscience.               | 635 |
| 2009;164(4):1588-600.                                                                        | 636 |

| 33.Luo Q, Cheng X, Holroyd T, Xu D, Carver F, Blair RJ. Theta band activity in response to         |     |
|----------------------------------------------------------------------------------------------------|-----|
| emotional expressions and its relationship with gamma band activity as revealed by MEG             | 638 |
| and advanced beamformer source imaging. Frontiers in human neuroscience.                           | 639 |
| 2013;7:940.                                                                                        | 640 |
| 34. Maratos FA, Mogg K, Bradley BP, Rippon G, Senior C. Coarse threat images reveal theta          | 641 |
| oscillations in the amygdala: a magnetoencephalography study. Cognitive, affective &               | 642 |
| behavioral neuroscience. 2009;9(2):133-43.                                                         | 643 |
| 35.Sainsbury RS, Harris JL, Rowland GL. Sensitization and hippocampal type 2 theta in the          | 644 |
| rat. Physiology & behavior. 1987;41(5):489-93.                                                     | 645 |
| 36.Sainsbury RS, Heynen A, Montoya CP. Behavioral correlates of hippocampal type 2 theta           | 646 |
| in the rat. Physiology & behavior. 1987;39(4):513-9.                                               | 647 |
| 37.Sainsbury RS, Montoya CP. The relationship between type 2 theta and behavior.                   | 648 |
| Physiology & behavior. 1984;33(4):621-6.                                                           | 649 |
| 38.Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325-40.                    | 650 |
| 39.Bland BH. The physiology and pharmacology of hippocampal formation theta rhythms.               | 651 |
| Prog Neurobiol. 1986;26(1):1-54.                                                                   | 652 |
| 40.Sainsbury RS. Hippocampal theta: a sensory-inhibition theory of function. Neuroscience          | 653 |
| and biobehavioral reviews. 1998;22(2):237-41.                                                      | 654 |
| 41.Adhikari A, Topiwala MA, Gordon JA. Synchronized Activity between the Ventral                   | 655 |
| Hippocampus and the Medial Prefrontal Cortex during Anxiety. Neuron. 2010;65(2):257-               | 656 |
| 69.                                                                                                | 657 |
| 42. Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JH, Sousa N. Stress affects theta activity | 658 |
| in limbic networks and impairs novelty-induced exploration and familiarization. Frontiers          | 659 |
| in behavioral neuroscience. 2013;7:127.                                                            | 660 |

| 43.Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabi MA, et al.             | 661 |
|-----------------------------------------------------------------------------------------------|-----|
| Dissociation between Dorsal and Ventral Hippocampal Theta Oscillations during Decision-       | 662 |
| Making. Journal of Neuroscience. 2013;33(14):6212-24.                                         | 663 |
| 44.Bland BH, Colom LV. Extrinsic and Intrinsic-Properties Underlying Oscillation and          | 664 |
| Synchrony in Limbic Cortex. Prog Neurobiol. 1993;41(2):157-208.                               | 665 |
| 45.Bland BH, Oddie SD. Theta band oscillation and synchrony in the hippocampal formation      | 666 |
| and associated structures: the case for its role in sensorimotor integration. Behavioural     | 667 |
| brain research. 2001;127(1-2):119-36.                                                         | 668 |
| 46. Pignatelli M, Beyeler A, Leinekugel X. Neural circuits underlying the generation of theta | 669 |
| oscillations. Journal of physiology, Paris. 2012;106(3-4):81-92.                              | 670 |
| 47.Lesting J, Daldrup T, Narayanan V, Himpe C, Seidenbecher T, Pape HC. Directional theta     | 671 |
| coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear                | 672 |
| extinction. PloS one. 2013;8(10):e77707.                                                      | 673 |
| 48.Narayanan RT, Seidenbecher T, Kluge C, Bergado J, Stork O, Pape HC. Dissociated theta      | 674 |
| phase synchronization in amygdalo- hippocampal circuits during various stages of fear         | 675 |
| memory. The European journal of neuroscience. 2007;25(6):1823-31.                             | 676 |
| 49.Kepecs A, Uchida N, Mainen ZF. The sniff as a unit of olfactory processing. Chemical       | 677 |
| senses. 2006;31(2):167-79.                                                                    | 678 |
| 50.Pelletier JG, Pare D. Role of amygdala oscillations in the consolidation of emotional      | 679 |
| memories. Biol Psychiatry. 2004;55(6):559-62.                                                 | 680 |
| 51.Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus.   | 681 |
| Nat Neurosci. 2009;12(12):1491-3.                                                             | 682 |
| 52.Rojas-Libano D, Frederick DE, Egana JI, Kay LM. The olfactory bulb theta rhythm follows    | 683 |
| all frequencies of diaphragmatic respiration in the freely behaving rat. Frontiers in         | 684 |
| behavioral neuroscience. 2014;8:214.                                                          | 685 |

| 53. Chang FCT. Modification of Medullary Respiratory-Related Discharge Patterns by           | 686 |
|----------------------------------------------------------------------------------------------|-----|
| Behaviors and States of Arousal. Brain Res. 1992;571(2):281-92.                              | 687 |
| 54. Clarke S, Trowill JA. Sniffing and motivated behavior in the rat. Physiology & behavior. | 688 |
| 1971;6(1):49-52.                                                                             | 689 |
| 55.Freeman WJ, Viana Di Prisco G, Davis GW, Whitney TM. Conditioning of relative             | 690 |
| frequency of sniffing by rabbits to odors. Journal of comparative psychology.                | 691 |
| 1983;97(1):12-23.                                                                            | 692 |
| 56.Kepecs A, Uchida N, Mainen ZF. Rapid and precise control of sniffing during olfactory     | 693 |
| discrimination in rats. Journal of neurophysiology. 2007;98(1):205-13.                       | 694 |
| 57. Monod B, Mouly AM, Vigouroux M, Holley A. An investigation of some temporal aspects      | 695 |
| of olfactory coding with the model of multi-site electrical stimulation of the olfactory     | 696 |
| bulb in the rat. Behavioural brain research. 1989;33(1):51-63.                               | 697 |
| 58.Wesson DW, Donahou TN, Johnson MO, Wachowiak M. Sniffing behavior of mice during          | 698 |
| performance in odor-guided tasks. Chemical senses. 2008;33(7):581-96.                        | 699 |
| 59.Kay LM. Theta oscillations and sensorimotor performance. Proceedings of the National      | 700 |
| Academy of Sciences of the United States of America. 2005;102(10):3863-8.                    | 701 |
| 60. Macrides F, Eichenbaum HB, Forbes WB. Temporal relationship between sniffing and the     | 702 |
| limbic theta rhythm during odor discrimination reversal learning. The Journal of             | 703 |
| neuroscience : the official journal of the Society for Neuroscience. 1982;2(12):1705-17.     | 704 |
| 61.Martin C, Beshel J, Kay LM. An olfacto-hippocampal network is dynamically involved in     | 705 |
| odor-discrimination learning. Journal of neurophysiology. 2007;98(4):2196-205.               | 706 |
| 62. Tsanov M, Chah E, Reilly R, O'Mara SM. Respiratory cycle entrainment of septal neurons   | 707 |
| mediates the fast coupling of sniffing rate and hippocampal theta rhythm. The European       | 708 |
| journal of neuroscience. 2014;39(6):957-74.                                                  | 709 |

| 63.Cao Y, Roy S, Sachdev RN, Heck DH. Dynamic correlation between whisking and breathing     | 710 |
|----------------------------------------------------------------------------------------------|-----|
| rhythms in mice. The Journal of neuroscience : the official journal of the Society for       | 711 |
| Neuroscience. 2012;32(5):1653-9.                                                             | 712 |
| 64. Ranade S, Hangya B, Kepecs A. Multiple modes of phase locking between sniffing and       | 713 |
| whisking during active exploration. The Journal of neuroscience : the official journal of    | 714 |
| the Society for Neuroscience. 2013;33(19):8250-6.                                            | 715 |
| 65.Komisaruk BR. Synchrony between limbic system theta activity and rhythmical behavior      | 716 |
| in rats. Journal of comparative and physiological psychology. 1970;70(3):482-92.             | 717 |
| 66.Assini R, Sirotin YB, Laplagne DA. Rapid triggering of vocalizations following social     | 718 |
| interactions. Current biology : CB. 2013;23(22):R996-7.                                      | 719 |
| 67.Wesson DW. Sniffing behavior communicates social hierarchy. Current biology : CB.         | 720 |
| 2013;23(7):575-80.                                                                           | 721 |
| 68.Shionoya K, Hegoburu C, Brown BL, Sullivan RM, Doyere V, Mouly AM. It's time to fear!     | 722 |
| Interval timing in odor fear conditioning in rats. Frontiers in behavioral neuroscience.     | 723 |
| 2013;7:128.                                                                                  | 724 |
| 69. Canteras NS, Simerly RB, Swanson LW. Organization of projections from the medial         | 725 |
| nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol. 1995;360(2):213-45.         | 726 |
| 70.Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76(1):209-22.                | 727 |
| 71. Marder E. Neuromodulation of neuronal circuits: back to the future. Neuron.              | 728 |
| 2012;76(1):1-11.                                                                             | 729 |
| 72. Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding | 730 |
| of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci.                  | 731 |
| 2012;14(4):345-67.                                                                           | 732 |
| 73.Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, et al. Neurosystems:      | 733 |
| brain rhythms and cognitive processing. The European journal of neuroscience.                | 734 |
| 2014;39(5):705-19.                                                                           | 735 |

| 74. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nature        | 736          |
|----------------------------------------------------------------------------------------------|--------------|
| reviews Neuroscience. 2011;12(2):105-18.                                                     | 737          |
| 75.Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a gate    | way 738      |
| to memory and attention. Curr Opin Neurobiol. 2011;21(3):475-85.                             | 739          |
| 76. Jutras MJ, Buffalo EA. Synchronous neural activity and memory formation. Curr Opin       | ו 740        |
| Neurobiol. 2010;20(2):150-5.                                                                 | 741          |
| 77.Brock J, Brown CC, Boucher J, Rippon G. The temporal binding deficit hypothesis of        | 742          |
| autism. Development and psychopathology. 2002;14(2):209-24.                                  | 743          |
| 78.Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanat       | ory 744.     |
| model for autism spectrum disorders. Phys Life Rev. 2011;8(4):410-37.                        | 745          |
| 79.Barttfeld P, Amoruso L, Ais J, Cukier S, Bavassi L, Tomio A, et al. Organization of brain | n <b>746</b> |
| networks governed by long-range connections index autistic traits in the general             | 747          |
| population. Journal of neurodevelopmental disorders. 2013;5(1):16.                           | 748          |
| 80. Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spe        | ctrum 749    |
| disorder. Clinical neurophysiology : official journal of the International Federation of     | 750          |
| Clinical Neurophysiology. 2008;119(5):1002-9.                                                | 751          |
| 81.Doesburg SM, Vidal J, Taylor MJ. Reduced theta connectivity during set-shifting in        | 752          |
| children with autism. Frontiers in human neuroscience. 2013;7.                               | 753          |
| 82. Isler JR, Martien KM, Grieve PG, Stark RI, Herbert MR. Reduced functional connectiv      | ity in 754   |
| visual evoked potentials in children with autism spectrum disorder. Clinical                 | 755          |
| neurophysiology : official journal of the International Federation of Clinical               | 756          |
| Neurophysiology. 2010;121(12):2035-43.                                                       | 757          |
| 83.Kikuchi M, Yoshimura Y, Hiraishi H, Munesue T, Hashimoto T, Tsubokawa T, et al.           | 758          |
| Reduced long-range functional connectivity in young children with autism spectrum            | 759          |
| disorder. Social cognitive and affective neuroscience. 2014.                                 | 760          |

| 84.Machado C, Estevez M, Leisman G, Melillo R, Rodriguez R, Defina P, et al. QEEG Spectral    | 761 |
|-----------------------------------------------------------------------------------------------|-----|
| and Coherence Assessment of Autistic Children in Three Different Experimental                 | 762 |
| Conditions. Journal of autism and developmental disorders. 2013.                              | 763 |
| 85. Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in | 764 |
| EEG coherence in individuals with autism. Biol Psychiatry. 2007;62(3):270-3.                  | 765 |
| 86.Gur R, Tendler A, Wagner S. Long-Term Social Recognition Memory Is Mediated by             | 766 |
| Oxytocin-Dependent Synaptic Plasticity in the Medial Amygdala. Biol Psychiatry. 2014.         | 767 |
| 87.Cohen Y, Wilson DA, Barkai E. Differential Modifications of Synaptic Weights During Odor   | 768 |
| Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and             | 769 |
| Higher Brain Areas. Cerebral cortex. 2013.                                                    | 770 |
| 88.Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Amsterdam ;         | 771 |
| Boston ;: Academic Press/Elsevier; 2007.                                                      | 772 |
| 89. Thomson DJ. Spectrum Estimation and Harmonic-Analysis. P leee. 1982;70(9):1055-96.        | 773 |
| 90. Mitra P, Bokil H. Observed brain dynamics. Oxford ; New York: Oxford University Press;    | 774 |
| 2008. xxii, 381 p. p.                                                                         | 775 |
|                                                                                               | 776 |
|                                                                                               | 777 |

## **Figures and tables**

| Figure 1: A simplistic scheme of sensory information flow in the network of                | 779 |
|--------------------------------------------------------------------------------------------|-----|
| brain regions thought to underlie social recognition memory.                               | 780 |
| Social olfactory cues are detected by sensory neurons in the main olfactory epithelium     | 781 |
| (MOE) and vomeronasal organ (VNO). These neurons project to the main (MOB) and             | 782 |
| accessory (AOB) olfactory bulbs, which transmit information, either directly or            | 783 |
| indirectly (via the cortical nucleus of the amygdala – CoA) to the medial amygdala         | 784 |
| (MeA). The MOB also innervates the piriform cortex (Pir). The MeA projects to the          | 785 |
| lateral septum (LS), which innervates the hippocampus (Hip).                               | 786 |
|                                                                                            | 787 |
| Figure 2: Theta rhythmicity in the rat brain is enhanced during social                     | 788 |
| encounters, in correlation with the novelty of the social stimulus.                        | 789 |
| a) A scheme of the habituation-dishabituation SRM paradigm.                                | 790 |
| b) Examples of LFP traces recorded in the MOB, LS and MeA during a social                  | 791 |
| encounter.                                                                                 | 792 |
| c) Power spectral density (PSD) analyses of a 5-min LFP recording from all five            | 793 |
| brain areas during a social encounter. Gray bar represents the 7-9 Hz band.                | 794 |
| d) Superimposed PSD analyses of LFP recordings from the MeA of one animal                  | 795 |
| during the various stages of the SRM test.                                                 | 796 |
| e) As in <b>d</b> , zooming on the 4-10 Hz range.                                          | 797 |
| f) The ~8 Hz PSD peak (TP) and social investigation time (IT) for the same                 | 798 |
| experiment as in $\mathbf{d}$ , plotted as a function of the encounter number. Encounter 0 | 799 |
| represents no stimulus (Base).                                                             | 800 |
|                                                                                            | 801 |

| Figure 3: Theta rhythmicity is modulated by the novelty of social, but not other |                                                                                        | 802 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|
| te                                                                               | sted stimuli.                                                                          | 803 |
| a)                                                                               | TP for all brain areas (upper) as well as IT (lower) during the SRM test of one        | 804 |
|                                                                                  | animal, using awake and anesthetized social stimuli as well as object and smell        | 805 |
|                                                                                  | stimuli, all except smell tested with the same animal.                                 | 806 |
| b)                                                                               | Mean TP for the various brain regions averaged ( $\pm$ SEM) and plotted as a function  | 807 |
|                                                                                  | of the test stage, for social (blue, n=8) and object (red, n=6) stimuli. A significant | 808 |
|                                                                                  | difference was found between the various encounters in all brain regions for social    | 809 |
|                                                                                  | stimuli ( $p$ <0.005, one-way repeated measures ANOVA, Figure 3 – source data 1a),     | 810 |
|                                                                                  | while no difference was found for object recognition ( $p$ >0.05, Figure 3 – source    | 811 |
|                                                                                  | data 1b). Post hoc paired t-test showed significant differences between Enc. 1 and     | 812 |
|                                                                                  | Enc. 4 as well as between Enc. 4 and Enc. 5 (dashed lines) in all brain regions for    | 813 |
|                                                                                  | social stimuli (* $p_{corr} < 0.05$ , Figure 3 – source data 2).                       | 814 |
| c)                                                                               | As in <b>b</b> , for the IT of the social and object paradigms. Unlike the TP, both    | 815 |
|                                                                                  | paradigms showed similarly significant modulation of the IT (Figure 3 – source         | 816 |
|                                                                                  | data 1-2).                                                                             | 817 |
|                                                                                  |                                                                                        | 818 |
| Fi                                                                               | gure 4: Modulation of the theta rhythmicity by social stimulus novelty reflects        | 819 |
| ar                                                                               | internal state in the brain.                                                           | 820 |
| a)                                                                               | Color-coded spectrograms of the LFP recorded in the MOB (upper), LS (middle)           | 821 |
|                                                                                  | and MeA (lower) for 5 min before (Base), during (Enc. 1) and after (Post 1) the        | 822 |
|                                                                                  | first encounter of the SRM test. All spectrograms are averages of five animals (4      | 823 |
|                                                                                  | animals for LS). Gray bar marks the 15 s needed for stimulus transfer to the arena.    | 824 |
| b)                                                                               | Upper – instantaneous $\Delta TP$ (change from mean Base) in the LS averaged over four | 825 |
|                                                                                  | rats (±SEM) during the Enc. and Post periods of all trials (1-5), for social (left,    | 826 |

| n=5) and object (right, n=4) paradigms. The 15 min breaks between last Post and                    | 827 |
|----------------------------------------------------------------------------------------------------|-----|
| next Enc. periods are labeled with gray bars. Lower – mean ( $\pm$ SEM) values for the             | 828 |
| corresponding periods shown above.                                                                 | 829 |
| c) Comparison of mean $\Delta$ TP averaged over all trials (1-5) for each brain area,              | 830 |
| between the Enc. and Post periods of the social and object paradigms (* $p < 0.05$ ,               | 831 |
| paired t-test, Figure 4 – source data 1).                                                          | 832 |
| d) Left –the instantaneous $\Delta TP$ shown in <b>b</b> , expanded to show the initial 50 seconds | 833 |
| of all encounters. Gray area represents the 15 s needed for stimulus transfer to the               | 834 |
| experimental arena. Right – Same for object stimuli.                                               | 835 |
|                                                                                                    | 836 |
| Figure 5: Differential and dynamic correlation of theta rhythmicity between                        | 837 |
| specific brain regions.                                                                            | 838 |
| a) Upper – superimposed LFP traces (filtered 5-11 Hz) from the MeA (black) and LS                  | 839 |
| (colored) of one animal during Base (left, red) and Enc. 1 (right, blue). Lower –                  | 840 |
| cross-correlations between both regions for each of the 300 seconds recorded                       | 841 |
| during the same periods, with peaks labeled by colored dots.                                       | 842 |
| b) Same as <b>a</b> for the MeA and MOB.                                                           | 843 |
| c) Middle – distribution of the cross-correlation peaks for the data in <b>a</b> . Borders –       | 844 |
| histograms of the cross-correlation peaks in the correlation (right) and lag (bottom)              | 845 |
| axes. Mean±SD are marked to the left (correlation) or above (lag) the histograms.                  | 846 |
| d) Same as <b>c</b> for the data in <b>b</b> .                                                     | 847 |
|                                                                                                    | 848 |
| Figure 6: Theta coherence between specific brain regions increases during social                   | 849 |
| encounter.                                                                                         | 850 |

| a)                          | Mean (n=10 animals) coherence (0-100 Hz) of the LFP signals recorded in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 851                                                                                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                             | MeA and LS during Base, Enc. 1 and Post 1 periods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 852                                                                                                                                          |
| b)                          | Same animals, coherence analysis between the MeA and MOB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 853                                                                                                                                          |
| c)                          | Spectrograms (0-20 Hz) of the coherence analyses shown in a (between MeA and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 854                                                                                                                                          |
|                             | LS, upper panel) and <b>b</b> (between MeA and MOB, lower panel).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 855                                                                                                                                          |
| d)                          | Mean coherence at 8 Hz between the MeA and all other areas (MOB, AOB n=11;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 856                                                                                                                                          |
|                             | LS, Pir n=10) during the Base, Enc. 1 and Post 1 periods of social encounter (*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 857                                                                                                                                          |
|                             | $p_{\text{corr}} < 0.05$ , paired t-test, Figure 5 – source data 1a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 858                                                                                                                                          |
| e)                          | Same as <b>d</b> , for coherence of the MOB with all other areas (* $p_{corr} < 0.05$ , paired t-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 859                                                                                                                                          |
|                             | test, Figure 5 – source data 1b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 860                                                                                                                                          |
| f)                          | Same as <b>d</b> , for object stimuli (Figure 5 – source data 1c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 861                                                                                                                                          |
| g)                          | Same as <b>e</b> , for object stimuli (* $p_{corr} < 0.05$ , paired t-test, Figure 5 – source data 1d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 862                                                                                                                                          |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 863                                                                                                                                          |
| Fi                          | gure 7: Distinct types of theta rhythmicity are induced by social and fearful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 863<br>864                                                                                                                                   |
| Fi                          | gure 7: Distinct types of theta rhythmicity are induced by social and fearful stimuli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 863<br>864<br>865                                                                                                                            |
| Fi<br>a)                    | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 863<br>864<br>865<br>866                                                                                                                     |
| Fi                          | gure 7: Distinct types of theta rhythmicity are induced by social and fearful stimuli. PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 863<br>864<br>865<br>866<br>867                                                                                                              |
| Fi                          | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min<br>prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)<br>during fear memory recall (left, FC) and social encounter (right, SR).                                                                                                                                                                                                                                                                                                                                                                   | 863<br>864<br>865<br>866<br>867<br>868                                                                                                       |
| Fi<br>a)<br>b)              | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min<br>prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)<br>during fear memory recall (left, FC) and social encounter (right, SR).<br>The change between Stimulus and Base PSD analyses (Stimulus minus Base)                                                                                                                                                                                                                                                                                        | 863<br>864<br>865<br>866<br>867<br>868<br>868                                                                                                |
| Fi<br>a)<br>b)              | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min<br>prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)<br>during fear memory recall (left, FC) and social encounter (right, SR).<br>The change between Stimulus and Base PSD analyses (Stimulus minus Base)<br>shown in <b>a</b> , for FC and SR, superimposed.                                                                                                                                                                                                                                    | 863<br>864<br>865<br>866<br>867<br>868<br>869<br>870                                                                                         |
| <b>Fi</b><br>a)<br>b)       | gure 7: Distinct types of theta rhythmicity are induced by social and fearful stimuli. PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue) during fear memory recall (left, FC) and social encounter (right, SR). The change between Stimulus and Base PSD analyses (Stimulus minus Base) shown in <b>a</b> , for FC and SR, superimposed. Mean change in PSD profile for all brain areas of the same six animals during the                                                                                                                                                                    | 863<br>864<br>865<br>866<br>867<br>868<br>869<br>870<br>871                                                                                  |
| <b>Fi</b><br>a)<br>b)       | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min<br>prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)<br>during fear memory recall (left, FC) and social encounter (right, SR).<br>The change between Stimulus and Base PSD analyses (Stimulus minus Base)<br>shown in <b>a</b> , for FC and SR, superimposed.<br>Mean change in PSD profile for all brain areas of the same six animals during the<br>FC (continuous lines) and SR (dashed lines) experiments.                                                                                   | <ul> <li>863</li> <li>864</li> <li>865</li> <li>866</li> <li>867</li> <li>868</li> <li>869</li> <li>870</li> <li>871</li> <li>872</li> </ul> |
| <b>Fi</b><br>a)<br>b)<br>c) | gure 7: Distinct types of theta rhythmicity are induced by social and fearful<br>stimuli.<br>PSD analyses (0-20 Hz) of LFP signal recorded in the LS of one animal, 5 min<br>prior to stimulus introduction (Base, red) and 15 sec following it (Stimulus, blue)<br>during fear memory recall (left, FC) and social encounter (right, SR).<br>The change between Stimulus and Base PSD analyses (Stimulus minus Base)<br>shown in <b>a</b> , for FC and SR, superimposed.<br>Mean change in PSD profile for all brain areas of the same six animals during the<br>FC (continuous lines) and SR (dashed lines) experiments.<br>Mean (±SEM) values of the peak change in PSD in the low (4-8 Hz, red and blue) | 863<br>864<br>865<br>866<br>867<br>868<br>869<br>870<br>871<br>872<br>873                                                                    |

| SR (blue and light blue) experiments (** $p$ <0.01, experiment X theta range          | 875         |
|---------------------------------------------------------------------------------------|-------------|
| interaction, two-way repeated measures ANOVA, Figure 7 – source data 1).              | 876         |
|                                                                                       | 877         |
| Figure 8: Distinct changes in theta coherence between various brain region            | is are 878  |
| induced by social and fearful stimuli.                                                | 879         |
| a) Coherence analyses (0-20 Hz) of LFP signal recorded in the LS and MeA of           | one 880     |
| animal, 5 min prior to stimulus introduction (Base, red) and 15 sec following         | g it 881    |
| (Stimulus, blue) during fear memory recall (left, FC) and social encounter (r         | ight, 882   |
| SR).                                                                                  | 883         |
| b) The change between Stimulus and Base coherence analyses (Stimulus minus            | s Base) 884 |
| shown in <b>a</b> , for FC and SR, superimposed.                                      | 885         |
| c) Mean ( $\pm$ SEM) values of the peak change in coherence between all possible of   | couples 886 |
| of brain areas in the low (4-8 Hz, red and blue) and high (8-12 Hz, pink and          | light 887   |
| blue) theta ranges for the FC (red and pink) and SR (blue and light blue)             | 888         |
| experiments (* $p < 0.05$ , ** $p < 0.01$ , experiment X theta range interaction, two | o-way 889   |
| repeated measures ANOVA, Figure 8 – source data 1).                                   | 890         |
|                                                                                       | 891         |
| Figure 9: Different patterns of coherence change characterize the distinct            | 892         |
| arousal states.                                                                       | 893         |
| Graphical color-coded presentation of the mean changes in coherence for the Fe        | C and 894   |
| SR experiments.                                                                       | 895         |
|                                                                                       | 896         |
| Supplementary Video 1: Social encounter between two adult male rats in the            | 897         |
| experimental arena. The recorded subject carries a black transmitter equipped v       | vith a 898  |
| flashing led light of its head. Frame number is shown in the right low corner. T      | he 899      |

| graph below the movie shows the LFP recorded in the AOB (blue), MOB (red) and | 900 |
|-------------------------------------------------------------------------------|-----|
| MeA (green). The bottom graph shows raster plots of spikes detected from the  | 901 |
| recorded multi-unit activity signal.                                          | 902 |
|                                                                               | 903 |
|                                                                               | 904 |

| Supplemental figures titles and legends                                              | 905 |
|--------------------------------------------------------------------------------------|-----|
|                                                                                      | 906 |
| Figure 4 – figure supplement 1: Mean LFP spectrograms across the SRM                 | 907 |
| paradigm for the AOB                                                                 | 908 |
| Color-coded spectrograms (0-20 Hz) of the LFP recorded in the AOB during the SRM     | 909 |
| test. Gray bar marks the 15 s needed for stimulus delivery to the arena. Mean of 5   | 910 |
| animals.                                                                             | 911 |
|                                                                                      | 912 |
| Figure 4 – figure supplement 2: Mean LFP spectrograms across the SRM                 | 913 |
| paradigm for the MOB                                                                 | 914 |
| Color-coded spectrograms (0-20 Hz) of the LFP recorded in the MOB during the         | 915 |
| SRM test. Gray bar marks the 15 s needed for stimulus delivery to the arena. Mean of | 916 |
| 5 animals.                                                                           | 917 |
|                                                                                      | 918 |
| Figure 4 – figure supplement 3: Mean LFP spectrograms across the SRM                 | 919 |
| paradigm for the MEA                                                                 | 920 |
| Color-coded spectrograms (0-20 Hz) of the LFP recorded in the MEA during the         | 921 |
| SRM test. Gray bar marks the 15 s needed for stimulus delivery to the arena. Mean of | 922 |
| 5 animals.                                                                           | 923 |
|                                                                                      | 924 |
| Figure 4 – figure supplement 4: Mean LFP spectrograms across the SRM                 | 925 |
| paradigm for the LS                                                                  | 926 |
| Color-coded spectrograms (0-20 Hz) of the LFP recorded in the LS during the SRM      | 927 |
| test. Gray bar marks the 15 s needed for stimulus delivery to the arena. Mean of 4   | 928 |
| animals.                                                                             | 929 |

| Figure 4 – figure supplement 5: Mean LFP spectrograms across the SRM                  | 931 |
|---------------------------------------------------------------------------------------|-----|
| paradigm for the Pir                                                                  | 932 |
| Color-coded spectrograms (0-20 Hz) of the LFP recorded in the Pir during the SRM      | 933 |
| test. Gray bar marks the 15 s needed for stimulus delivery to the arena. Mean of 5    | 934 |
| animals.                                                                              | 935 |
|                                                                                       | 936 |
| Figure 4 – figure supplement 6: Comparison of mean instantaneous TP between           | 937 |
| social and object stimuli, for the AOB and MOB                                        | 938 |
| Upper panels – instantaneous $\Delta TP$ (change from mean Base) in each brain area   | 939 |
| averaged over all animals (mean±SEM) during the Enc. and Post periods of all trials   | 940 |
| (1-5), for social (left, n=5 rats) and object (right, n=4 rats) paradigms. The 15 min | 941 |
| breaks between last Post and next Enc. periods are labeled with gray bars. Lower      | 942 |
| panels – mean ( $\pm$ SEM) values for the corresponding periods shown above.          | 943 |
|                                                                                       | 944 |
| Figure 4 – figure supplement 7: Comparison of mean instantaneous TP between           | 945 |
| social and object stimuli, for the MeA and Pir                                        | 946 |
| Upper panels – instantaneous $\Delta TP$ (change from mean Base) in each brain area   | 947 |
| averaged over all animals (mean±SEM) during the Enc. and Post periods of all trials   | 948 |
| (1-5), for social (left, n=5 rats) and object (right, n=4 rats) paradigms. The 15 min | 949 |
| breaks between last Post and next Enc. periods are labeled with gray bars. Lower      | 950 |
| panels – mean (±SEM) values for the corresponding periods shown above.                | 951 |
|                                                                                       | 952 |
| Figure 6 – figure supplement 1: Mean spectrograms of coherence between the            | 953 |
| MeA and all other areas during trial 1 of the SRM paradigm                            | 954 |

| Color-coded spectrograms (0-20 Hz) of the mean LFP coherence (MOB, AOB -                | 955 |
|-----------------------------------------------------------------------------------------|-----|
| n=11; LS, Pir - $n=10$ , cMeA - contralateral MeA, $n=3$ ) between the MOB and all      | 956 |
| other brain areas, during the first trial of SRM test, each depicting continuous 15 min | 957 |
| divided to the Base, Enc. 1 and Post 1 periods.                                         | 958 |
|                                                                                         | 959 |
| Figure 6 – figure supplement 2: Mean spectrograms of coherence between the              | 960 |
| MOB and all other areas during trial 1 of the SRM paradigm                              | 961 |
| Color-coded spectrograms (0-20 Hz) of the mean LFP coherence (MeA, AOB - n=11;          | 962 |
| LS, Pir - n=10, cMeA - contralateral MeA, n=3) between the MOB and all other brain      | 963 |
| areas, during the first trial of SRM test, each depicting continuous 15 min divided to  | 964 |
| the Base, Enc. 1 and Post 1 periods.                                                    | 965 |
|                                                                                         | 966 |
| Figure 6 – figure supplement 3: Mean theta coherence during trial 1 of the SRM          | 967 |
| paradigm                                                                                | 968 |
| a) Mean coherence at 8 Hz between the MeA and all other areas (MOB, AOB n=11;           | 969 |
| LS, Pir n=10, cMeA - contralateral MeA, n=3) during the Base, Enc. 1 and Post 1         | 970 |
| periods of the SRM paradigm.                                                            | 971 |
| b) Same as <b>a</b> , for coherence of the MOB with all other areas.                    | 972 |
|                                                                                         | 973 |
| Figure 7 – figure supplement 1: Arousal-driven locomotion during recall of fear         | 974 |
| memory                                                                                  | 975 |
| a) A schematic drawing of the fear conditioning session, comprising 5 events of 40-     | 976 |
| sec tone (gray bar) followed by brief electrical foot shock (red bar).                  | 977 |
| b) Locomotion activity of one animal during the recall of fear memory, one day after    | 978 |
|                                                                                         |     |

|    | represent the 40-sec long tone. Tone start is marked on the X-axis by T15 and          | 980 |
|----|----------------------------------------------------------------------------------------|-----|
|    | tone end by S15.                                                                       | 981 |
| c) | Mean locomotion (n=6 animals) during fear recall around the first tone, as a           | 982 |
|    | function of time. Tone started 15 sec from beginning of the experiment and is          | 983 |
|    | marked by a gray bar. Note the intense locomotion of the animals during most of        | 984 |
|    | the tone, as opposed to their freezing at the end of it, when expecting the electrical | 985 |
|    | foot shock. Black dashed line represent the 15-sec period during which theta           | 986 |
|    | activity was calculated. Error bars represent SEM.                                     | 987 |
|    |                                                                                        | 988 |
|    |                                                                                        | 989 |

| Source data titles and legends                                                               | 990  |
|----------------------------------------------------------------------------------------------|------|
| Figure 3 – source data 1: Theta power (TP) modulation between encounters.                    |      |
| One-way ANOVA (repeated measures) test was used to determine whether there is a              | 992  |
| significant difference between the mean $\Delta$ TP of all 5 encounters during either social | 993  |
| (1a) or object (1b) recognition. The assumption of normality was assessed by                 | 994  |
| Lilliefors and Shapiro-Wilk tests. Sphericity was assessed by Mauchly's test.                | 995  |
|                                                                                              | 996  |
| Figure 3 – source data 2: Statistical assessment of habituation and dishabituation           | 997  |
| Paired t-tests were used for the social $(2a)$ and object $(2b)$ recognition paradigms, to   | 998  |
| examine if the differences between Enc.1 and Enc. 4 (habituation), as well as between        | 999  |
| Enc. 4 and Enc. 5 (dishabituation) are statistically significant. Tests were one-sided       | 1000 |
| and corrected for multiple comparisons using Bonferroni's correction.                        | 1001 |
|                                                                                              | 1002 |
| Figure 4 – source data 1: Comparison of $\Delta TP$ between Enc. and Post periods            | 1003 |
| Paired t-tests were used to compare between the mean $\Delta TP$ across Enc. vs. the mean    | 1004 |
| $\Delta$ TP across Post periods. The assumption of normality was assessed by Lilliefors and  | 1005 |
| Shapiro-Wilk tests.                                                                          | 1006 |
|                                                                                              | 1007 |
| Figure 6 – source data 1: Assessment of change in theta Coherence from Base to               | 1008 |
| either Enc. 1 or Post 1                                                                      | 1009 |
| The change from Base to Enc. 1 (upper) and from Base to Post 1 (lower), in theta             | 1010 |
| coherence during social recognition between the MeA and all other areas (1a) and             | 1011 |
| between the MOB and all areas (1b), as well as during object recognition between the         | 1012 |
| MeA and all other areas (1c), and between the MOB and all areas (1d), was                    | 1013 |
| statistically validated using paired t-tests, corrected for multiple comparisons             | 1014 |
| (Bonferroni correction). The assumption of normality was assessed by Lilliefors and          | 1015 |
| Shapiro-Wilk tests.                                                                          | 1016 |
|                                                                                              | 1017 |
| Figure 7 – source data 1: Comparison of change in theta power in low and high                | 1018 |
| theta bands between social and fearful stimuli.                                              | 1019 |
| Comparison of the change in theta power between social recognition (SR) and fear             | 1020 |
| conditioning (FC) at high and low theta ranges, statistically validated using two-way        | 1021 |

| repeated measures ANOVA (p - experiment X theta range interaction). The                                                     | 1022         |
|-----------------------------------------------------------------------------------------------------------------------------|--------------|
| assumption of normality was assessed by Lilliefors and Shapiro-Wilk tests.                                                  | 1023         |
|                                                                                                                             | 1024         |
| Figure 8 – source data 1: Comparison of change in coherence in low and high theta bands between social and fearful stimuli. | 1025<br>1026 |
| Comparison of the change in coherence between social recognition (SR) and fear                                              | 1027         |
| conditioning (FC) at high and low theta ranges (right), statistically validated using                                       | 1028         |
| two-way repeated measures ANOVA ( $p$ - experiment X theta range interaction). The                                          | 1029         |
| assumption of normality was assessed by Lilliefors and Shapiro-Wilk tests.                                                  | 1030         |
|                                                                                                                             | 1031         |



















SR: 8-12 Hz

